2 теорема о сумме внутренних углов треугольника. Сумма углов треугольника

Предварительные сведения

Вначале рассмотрим непосредственно понятие треугольника.

Определение 1

Треугольником будем называть геометрическую фигуру, которая составлена из трех точек, соединенных между собой отрезками (рис. 1).

Определение 2

Точки в рамках определения 1 будем называть вершинами треугольника.

Определение 3

Отрезки в рамках определения 1 будем называть сторонами треугольника.

Очевидно, что любой треугольник будет иметь 3 вершин, а также три стороны.

Теорема о сумме углов в треугольнике

Введем и докажем одну из основных теорем, связанную с треугольников, а именно теорему о сумме углов в треугольнике.

Теорема 1

Сумма углов в любом произвольном треугольнике равняется $180^\circ$.

Доказательство.

Рассмотрим треугольник $EGF$. Докажем, что сумма углов в этом треугольнике равняется $180^\circ$. Сделаем дополнительное построение: проведем прямую $XY||EG$ (рис. 2)

Так как прямые $XY$ и $EG$ параллельны, то $∠E=∠XFE$ как накрест лежащие при секущей $FE$, а $∠G=∠YFG$ как накрест лежащие при секущей $FG$

Угол $XFY$ будет развернутым, следовательно, равняется $180^\circ$.

$∠XFY=∠XFE+∠F+∠YFG=180^\circ$

Следовательно

$∠E+∠F+∠G=180^\circ$

Теорема доказана.

Теорема о внешнем угле треугольника

Еще одной теоремой о сумме углов для треугольника можно считать теорему о внешнем угле. Для начала введем это понятие.

Определение 4

Внешним углом треугольника будем называть такой угол, который будет смежным с каким-либо углом треугольника (рис. 3).

Рассмотрим теперь непосредственно теорему.

Теорема 2

Внешний угол треугольника равняется сумме двух углов треугольника, которые не являются смежным для него.

Доказательство.

Рассмотрим произвольный треугольник $EFG$. Пусть он имеет внешний угол треугольника $FGQ$ (рис. 3).

По теореме 1 ,будем иметь, что $∠E+∠F+∠G=180^\circ$, следовательно,

$∠G=180^\circ-(∠E+∠F)$

Так как угол $FGQ$ внешний, то он смежен с углом $∠G$, тогда

$∠FGQ=180^\circ-∠G=180^\circ-180^\circ+(∠E+∠F)=∠E+∠F$

Теорема доказана.

Пример задач

Пример 1

Найти все углы треугольника, если он является равносторонним.

Так как у равностороннего треугольника все стороны равны, то будем иметь, что и все углы в нем также равны между собой. Обозначим их градусные меры через $α$.

Тогда, по теореме 1 будем получать

$α+α+α=180^\circ$

Ответ: все углы равняются по $60^\circ$.

Пример 2

Найти все углы равнобедренного треугольника, если один его угол равняется $100^\circ$.

Введем следующие обозначения углов в равнобедренном треугольнике:

Так как нам не дано в условии, какой именно угол равняется $100^\circ$, то возможны два случая:

    Угол, равный $100^\circ$ - угол при основании треугольника.

    По теореме об углах при основании равнобедренного треугольника получим

    $∠2=∠3=100^\circ$

    Но тогда только их сумма будет больше, чем $180^\circ$, что противоречит условию теоремы 1. Значит, этот случай не имеет места.

    Угол, равный $100^\circ$ - угол между равными сторонами, то есть

    1) Сумма углов треугольника равна 180°.

    Доказательство

    Пусть ABC" - произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида) . Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
    2) Внешним углом треугольника при данной вершине называется угол, смежный с углом треугольника при этой вершине.

    Теорема: Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним

    Доказательство. Пусть ABC – данный треугольник. По теореме о сумме углов в треугольнике
    ∠ ABС + ∠ BCA + ∠ CAB = 180 º.
    Отсюда следует
    ∠ ABС + ∠ CAB = 180 º - ∠ BCA = ∠ BCD
    Теорема доказана.

    Из теоремы следует:
    Внешний угол треугольника больше любого угла треугольника, не смежного с ним.
    3)
    Сумма углов треугольника = 180 градусов. Если один из углов прямой (90 градусов) на два остальных приходится тоже 90. значит, каждый из них - меньше 90 то есть они - острые. если один из углов - тупой, то на два остальных приходится менее 90 то есть они явно острые.
    4)
    тупоугольный - больше 90 градусов
    остроугольный - меньше 90 градусов
    5) а. Треугольник, у которого один из углов равен 90 градусов.
    б. Катеты и гипотенуза
    6)
    6°. В каждом треугольнике против большей стороны лежит больший угол и обратно: против большего угла лежит большая сторона. Любой отрезок имеет одну и только одну середину.
    7)
    По теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов, значит гипотенуза больше каждого из катетов
    8) --- тоже самое, что и 7
    9)
    сумма углов треугольника равно 180 градусов. а если бы аждая сторона треугольника была бы больше суммы двух других сторонон, то сумма углов была бы больше 180, что невозможно. следовательно - каждая сторона треугольника меньше суммы двух других сторон.
    10)
    Сумма углов любого треугольника равна 180 градусам.
    Т. к. этот треугольник прямоугольный, то один из углов у него прямой, т. е. равен 90 градусам.
    Следовательно, сумма двух других острых углов равна 180-90=90 градусов.
    11)
    1. рассмотрим прямоугольный треугольник ABC в которм угол А - прямой, угол В = 30 градусам а угол С = 60.Приложим к треугольнику АВС равный ему треугольник АВD. Получим треугольни BCD в котором угол B = углу D = 60 градусов, следовательно DC = BC. Но по построению АС 1/2 ВС, что и требовалось доказать.2. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета равен 30 градусам.докажем это.рассмотрим прямоугольный треугольник АВC, у которого катет АС равен половине гипотенузы АС.Приложим к треугольнику АВС равный ему треугольник ABD. Получит равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу(т.к. против равных строн лежат равные углы), поэтому каждый из них = 60 градусам. Но угол DBC = 2 угла ABC, следовательно угол АВС = 30 градусов,что и требовалось доказать.

    Теорема о сумме внутренних углов треугольника

    Сумма углов треугольника равна 180°.

    Доказательство:

    • Дан треугольник АВС.
    • Через вершину B проведем прямую DK параллельно основанию AC.
    • \angle CBK= \angle C как внутренние накрест лежащие при параллельных DK и AC, и секущей BC.
    • \angle DBA = \angle A внутренние накрест лежащие при DK \parallel AC и секущей AB. Угол DBK развернутый и равен
    • \angle DBK = \angle DBA + \angle B + \angle CBK
    • Так как развернутый угол равен 180 ^\circ , а \angle CBK = \angle C и \angle DBA = \angle A , то получим 180 ^\circ = \angle A + \angle B + \angle C.

    Теорема доказана

    Следствия из теоремы о сумме углов треугольника:

    1. Сумма острых углов прямоугольного треугольника равна 90° .
    2. В равнобедренном прямоугольном треугольнике каждый острый угол равен 45° .
    3. В равностороннем треугольнике каждый угол равен 60° .
    4. В любом треугольнике либо все углы острые, либо два угла острые, а третий - тупой или прямой.
    5. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

    Теорема о внешнем угле треугольника

    Внешний угол треугольника равен сумме двух оставшихся углов треугольника, не смежных с этим внешним углом

    Доказательство:

    • Дан треугольник АВС, где ВСD - внешний угол.
    • \angle BAC + \angle ABC +\angle BCA = 180^0
    • Из равенств угол \angle BCD + \angle BCA = 180^0
    • Получаем \angle BCD = \angle BAC+\angle ABC.

    >>Геометрия: Сумма углов треугольника. Полные уроки

    ТЕМА УРОКА: Сумма углов треугольника.

    Цели урока:

    • Закрепление и проверка знаний учащихся по теме: «Сумма углов треугольника»;
    • Доказательство свойства углов треугольника;
    • Применение этого свойства при решении простейших задач;
    • Использование исторического материала для развития познавательной активности учащихся;
    • Привитие навыка аккуратности при построении чертежей.

    Задачи урока:

    • Проверить умение учащихся решать задачи.

    План урока:

    1. Треугольник;
    2. Теорема о сумме углов треугольника;
    3. Пример задач.

    Треугольник.

    Файл:O.gif Треугольник - простейший многоугольник, имеющий 3 вершины (угла) и 3 стороны; часть плоскости, ограниченная тремя точками, и тремя отрезками, попарно соединяющими эти точки.
    Трём точкам пространства, не лежащим на одной прямой, соответствует одна и только одна плоскость.
    Любой многоугольник можно разбить на треугольники - этот процесс называется триангуляция .
    Существует раздел математики, целиком посвящённый изучению закономерностей треугольников - Тригонометрия .

    Теорема о сумме углов треугольника.

    Файл:T.gif Теорема о сумме углов треугольника - классическая теорема евклидовой геометрии, утверждает что cумма углов треугольника равна 180°.

    Доказательство":

    Пусть дан Δ ABC. Проведем через вершину B прямую, параллельную (AC) и отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC. Тогда угол (DBC) и угол (ACB) равны как внутренние накрест лежащие при параллельных прямых BD и AC и секущей (BC). Тогда сумма углов треугольника при вершинах B и C равна углу (ABD). Но угол (ABD) и угол (BAC) при вершине A треугольника ABC являются внутренними односторонними при параллельных прямых BD и AC и секущей (AB), и их сумма равна 180°. Следовательно, сумма углов треугольника равна 180°. Теорема доказана.


    Следствия.

    Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.

    Доказательство:

    Пусть дан Δ ABC. Точка D лежит на прямой AC так, что A лежит между C и D. Тогда BAD – внешний к углу треугольника при вершине A и A + BAD = 180°. Но A + B + C = 180°, и, следовательно, B + C = 180° – A. Отсюда BAD = B + C. Следствие доказано.


    Следствия.

    Внешний угол треугольника больше любого угла треугольника, не смежного с ним.

    Задача.

    Внешним углом треугольника называется угол, смежный с каким-нибудь углом этого треугольника. Докажите, что внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
    (Рис.1)

    Решение:

    Пусть в Δ АВС ∠DАС – внешний (Рис.1). Тогда ∠DАС=180°-∠ВАС (по свойству смежных углов), по теореме о сумме углов треугольника ∠В+∠С =180°-∠ВАС. Из этих равенств получим ∠DАС=∠В+∠С

    Интересный факт:

    Сумма углов треугольника":

    В геометрии Лобачевского сумма углов треугольника всегда меньше 180. В геометрии Эвклида она всегда равна 180 . В геометрии Римана сумма углов треугольника всегда больше 180.

    Из истории математики:

    Евклид (III в до н.э) в труде «Начала» приводит такое определение: «Параллельные суть прямые, которые находятся в одной плоскости и, будучи продолжены в обе стороны неограниченно, ни с той, ни с другой стороны между собой не встречаются».
    Посидоний (I в до н.э) «Две прямые, лежащие в одной плоскости, равноотстоящие друг от друга»
    Древнегреческий учёный Папп (III в до н.э) ввёл символ параллельных прямых- знак =. Впоследствии английский экономист Рикардо (1720-1823) этот символ использовал как знак равенства.
    Только в XVIII веке стали использовать символ параллельности прямых - знак ||.
    Ни на миг не прерывается живая связь между поколениями, ежедневно мы усваиваем опыт, накопленный нашими предками. Древние греки на основе наблюдений и из практического опыта делали выводы, высказывали гипотезы, а затем, на встречах учёных – симпозиумах (буквально « пиршество») – эти гипотезы пытались обосновать и доказать. В то время и сложилось утверждение: « В споре рождается истина».

    Вопросы:

    1. Что такое треугольник?
    2. Что гласит теорема о сумме углов треугольника?
    3. Чему равен внешний угол треугольника?

    Вдогонку ко вчерашнему:

    Играем с мозаикой под сказку по геометрии:

    Жили-были треугольники. Такие похожие, что просто копия друг друга.
    Стали они как-то рядышком на прямую линию. А так как были они все одного роста -
    то и верхушки их были на одном уровне, под линеечку:

    Треугольники любили кувыркаться и стоять на голове. Взобрались в верхний ряд и стали на уголок, как акробаты.
    А мы уже знаем - когда они стоят верхушками ровно в линию,
    то и подошвы у них тоже по линеечке - потому что если кто одного роста, то он и верх ногами одного роста!

    Во всем они были одинаковые - и высота одинаковая, и подошвы один в один,
    и горки по сторонам - одна круче, другая более пологая - по длине одинаковые
    и наклон у них одинаковый. Ну просто близнецы! (только в разных одежках, у каждого свой кусочек пазла) .

    - Где у треугольников одинаковые стороны? А где уголки одинаковые?

    Постояли треугольники на голове, постояли, да и решили соскользнуть и улечься в нижнем ряду.
    Заскользили и съехали как с горки; а горки-то у них одинаковые!
    Вот и поместились аккурат между нижними треугольниками, без зазоров и никто никого не потеснил.

    Огляделись треугольники и заметили интересную особенность.
    Везде, где их углы вместе сошлись - непременно встретились все три угла:
    самый большой - "угол-голова", самый острый угол и третий, средний по величине угол.
    Они даже ленточки цветные повязали, что б сразу было заметно, где какой.

    И получилось, что три угла треугольника, если их совместить -
    составляют один большой угол, "угол нараспашку" - как обложка раскрытой книги,

    ______________________о ___________________

    он так и называется: развернутый угол.

    У любого треугольника - будто паспорт: три угла вместе равны развернутому углу.
    Постучится к вам кто-нибудь: - тук-тук, я треугольник, пустите меня переночевать!
    А вы ему - Предъяви-ка сумму углов в развернутом виде!
    И сразу понятно - настоящий ли это треугольник или самозванец.
    Не прошел проверку - Разворачивайся на сто восемьдесят градусов и ступай восвояси!

    Когда говорят "повернуть на 180° - это значит развернуться задом наперед и
    идти в обратном направлении.

    То же самое в более привычных выражениях, без "жили были":

    Совершим параллельный перенос треугольника АВС вдоль оси ОХ
    на вектор АВ равный длине основания АВ.
    Прямая, DF проходящая через вершины С и С 1 треугольников
    параллельна оси ОХ, в силу того, что перпендикулярные оси ОХ
    отрезки h и h 1 (высоты равных треугольников) равны.
    Таким образом основание треугольника А 2 В 2 С 2 параллельно основанию АВ
    и равно ему по длине (т.к. вершина С 1 смещена относительно С на величину АВ).
    Треугольники А 2 В 2 С 2 и АВС равны по трем сторонам.
    А стало быть углы ∠А 1 ∠В ∠С 2 , образующие развернутый угол, равны углам треугольника АВС.
    => Сумма углов треугольника равна 180°

    С движениями - "трансляциями" так называемыми доказательство короче и наглядней,
    на кусочках мозаики даже малышу может быть понятно.

    Зато традиционное школьное:

    опирающееся на равенство внутренних накрест-лежащих углов, отсекаемых на параллельных прямых

    ценно тем, что дает представление о том - почему это так,
    почему сумма углов треугольника равна развернутому углу?

    Потому что иначе параллельные прямые не обладали бы привычными нашему миру свойствами.

    Теоремы работают в обе стороны. Из аксиомы о параллельных прямых следует
    равенство накрест лежащих и вертикальных углов, а из них - сумма углов треугольника.

    Но верно и обратное: пока углы треугольника составляют 180° - существуют параллельные прямые
    (такие, что через точку не лежащую на прямой можно провести единственную прямую || данной).
    Если однажды в мире появится треугольник, у которого сумма углов не равна развернутому углу -
    то параллельные перестанут быть параллельны, весь мир искривится и перекособочится.

    Если полосы с орнаментом из треугольников расположить друг над другом -
    можно покрыть все поле повторяющимся узором, будто пол плиткой:


    можно обводить на такой сетке разные фигуры - шестиугольники, ромбы,
    звездные многоугольники и получать самые разные паркеты


    Замощение плоскости паркетами - не только занятная игра, но и актуальная математическая задача:

    ________________________________________ _______________________-------__________ ________________________________________ ______________
    /\__||_/\__||_/\__||_/\__||_/\__|)0(|_/\__||_/\__||_/\__||_/\__||_/\=/\__||_/ \__||_/\__||_/\__||_/\__|)0(|_/\__||_/\__||_/\__||_/\__||_/\

    Поскольку каждый четырехугольник - прямоугольник, квадрат, ромб и проч.,
    может быть составлен из двух треугольников,
    соответственно сумма углов четырехугольника: 180° + 180°= 360°

    Одинаковые равнобедренные треугольники складываются в квадраты разными способами.
    Маленький квадратик из 2-х частей. Средний из 4-х. И самый большой из 8-ми.
    Сколько на чертеже фигур, состоящих из 6-ти треугольников?