Что такое диэлектрическая проницаемость. Диэлектрическая проницаемость воздуха как физическая величина

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ (диэлектрическая постоянная ) - физическая величина, характеризующая способность вещества уменьшать силы электрического взаимодействия в этом веществе по сравнению с вакуумом. Т. о., Д. п. показывает, во сколько раз силы электрического взаимодействия в веществе меньше, чем в вакууме.

Д. п.- характеристика, зависящая от строения вещества-диэлектрика. Электроны, ионы, атомы, молекулы или их отдельные части и более крупные участки какого-либо вещества в электрическом поле поляризуются (см. Поляризация), что приводит к частичной нейтрализации внешнего электрического поля. Если частота электрического поля соизмерима с временем поляризации вещества, то в определенном диапазоне частот имеет место дисперсия Д. п., т. е. зависимость ее величины от частоты (см. Дисперсия). Д. п. вещества зависит как от электрических свойств атомов и молекул, так и от их взаимного расположения, т. е. строения вещества. Поэтому определение Д. п. или ее изменения в зависимости от окружающих условий используют при исследовании структуры вещества, и в частности различных тканей организма (см. Электропроводность биологических систем).

Различные вещества (диэлектрики) в зависимости от их строения и агрегатного состояния имеют различную величину Д. п. (табл.).

Таблица. Значение диэлектрической проницаемости некоторых веществ

Особое значение для мед.-биол, исследований имеет изучение Д. и. в полярных жидкостях. Типичным их представителем является вода, состоящая из диполей, которые в электрическом поле ориентируются благодаря взаимодействию между зарядами диполя и полем, что приводит к возникновению дипольной или ориентационной поляризации. Высокая величина Д. п. воды (80 при t° 20°) определяет высокую степень диссоциации в ней различных хим. веществ и хорошую растворимость солей, к-т, оснований и других соединений (см. Диссоциация , Электролиты). С увеличением концентрации электролита в воде величина ее Д. п. уменьшается (напр., для одновалентных электролитов Д. п. воды уменьшается на единицу при увеличении концентрации соли на 0,1 М).

Большинство биол, объектов относится к гетерогенным диэлектрикам. При взаимодействии ионов биол, объекта с электрическим полем существенное значение имеет поляризация границ раздела (см. Мембраны биологические). При этом величина поляризации тем больше, чем меньше частота электрического поля. Т. к. поляризация границ раздела биол, объекта зависит от их проницаемости (см.) для ионов, то очевидно, что эффективная Д. п. в большей степени определяется состоянием мембран.

Т. к. поляризация такого сложного гетерогенного объекта, как биологический, имеет различную природу (концентрационная, макроструктурная, ориентационная, ионная, электронная и др.), то становится понятным тот факт, что с возрастанием частоты изменение Д. п. (дисперсия) резко выражено. Условно выделяют три области дисперсии Д. п.: альфа-дисперсия (на частотах до 1 кгц), бета-дисперсия (частота от нескольких кгц до десятков мгц) и гамма-дисперсия (частоты выше 10 9 гц); в биол, объектах четкой границы между областями дисперсии обычно нет.

При ухудшении функц, состояния биол, объекта дисперсия Д. п. на низких частотах уменьшается вплоть до полного исчезновения (при отмирании тканей). На высоких частотах величина Д. п. существенно не изменяется.

Д. п. измеряют в широком диапазоне частот и в зависимости от диапазона частот существенно изменяются и методы измерения. При частотах электрического тока менее 1 гц измерение производят с помощью метода заряда или разряда конденсатора, заполненного исследуемым веществом. Зная зависимость зарядного или разрядного тока от времени, можно определить не только величину электрической емкости конденсатора, но и потери в нем. На частотах от 1 до 3 10 8 гц для измерения Д. и. применяют специальные резонансные и мостовые методы, которые позволяют комплексно исследовать изменения Д. п. различных веществ наиболее полно и разносторонне.

В мед.-биол, исследованиях чаще всего используют симметричные мосты переменного тока с непосредственным отсчетом измеряемых величин.

Библиография: Высокочастотный нагрев диэлектриков и полупроводников, под ред. А. В. Нетушила,М. -Л., 1959, библиогр.; С едунов Б. И. и Фран к-К а м е-н e ц к и й Д. А. Диэлектрическая проницаемость биологических объектов, Усп. физич. наук, т. 79, в. 4, с. 617, 1963, библиогр.; Электроника и кибернетика в биологии и медицине, пер. с англ., под ред. П. К. Анохина, с. 71, М., 1963, библиогр.; Э м e Ф. Диэлектрические измерения, пер. с нем., М., 1967, библиогр.

Уровень поляризуемости вещества характеризуется особенной величиной, которую называют диэлектрическая проницаемость. Рассмотрим, что это за величина.

Допустим, что напряженность однородного поля между двух заряженных пластин в пустоте равна Е₀. Теперь заполним промежуток между ними любым диэлектриком. которые появятся на границе между диэлектриком и проводником благодаря его поляризации, частично нейтрализуют воздействие зарядов на пластинах. Напряженность Е данного поля станет меньше напряженности Е₀.

Опыт обнаруживает, что при последовательном заполнении промежутка между пластинами равными диэлектриками, величины напряженности поля окажутся разными. Поэтому зная величину отношения напряженности электрополя между пластинами в отсутствие диэлектрика Е₀ и при наличии диэлектрика Е, можно определять его поляризуемость, т.е. его диэлектрическую проницаемость. Эту величину принято обозначать греческой буквой ԑ (эпсилон). Следовательно, можно написать:

Диэлектрическая проницаемость демонстрирует, во сколько раз данных зарядов в диэлектрике (однородном) будет меньше, чем в вакууме.

Уменьшение силы взаимодействия между зарядами вызвано процессами поляризации среды. В электрическом поле электроны в атомах и молекулах уменьшаются по отношению к ионам, и возникает Т.е. те молекулы, у которых есть свой дипольный момент (в частности молекулы воды), ориентируются в электрическом поле. Эти моменты создают собственное электрическое поле, противодействующее тому полю, которое вызвало их появление. В результате суммарное электрическое поле уменьшается. В небольших полях это явление описывают с помощью понятия диэлектрической проницаемости.

Ниже приведена диэлектрическая проницаемость в вакууме различных веществ:

Воздух……………………………....1,0006

Парафин…………………………....2

Плексиглас (оргстекло)……3-4

Эбонит……………………………..…4

Фарфор……………………………....7

Стекло…………………………..…….4-7

Слюда……………………………..….4-5

Шелк натуральный............4-5

Шифер..............................6-7

Янтарь…………………………...……12,8

Вода………………………………...….81

Данные значения диэлектрической проницаемости веществ относятся к окружающим температурам в пределах 18—20 °С. Так, диэлектрическая проницаемость твердых тел незначительно изменяется с температурой, исключением являются сегнетоэлектрики.

Напротив, у газов она уменьшается из-за повышения температуры и возрастает в связи с увеличением давления. В практике принимается за единицу.

Примеси в небольших количествах мало влияют на уровень диэлектрической проницаемости жидкостей.

Если два произвольных точечных заряда поместить в диэлектрик, то напряженность поля, создаваемого каждым из этих зарядов в точке нахождения другого заряда, уменьшается в ԑ раз. Из этого следует, что сила, с которой эти заряды взаимодействуют один с другим, также в ԑ раз меньше. Поэтому для зарядов, помещенных в диэлектрик, выражается формулой:

F = (q₁q₂)/(4πԑₐr²),

где F — является силой взаимодействия, q₁ и q₂, — величины зарядов, ԑ — является абсолютной диэлектрической проницаемостью среды, г — дистанция между точечными зарядами.

Значение ԑ численно можно показать в относительных единицах (по отношению к значению абсолютной диэлектрической проницаемости вакуума ԑ₀). Величина ԑ = ԑₐ/ԑ₀ называют относительной диэлектрической проницаемостью. Она раскрывает, во сколько раз взаимодействие между зарядами в бесконечной однородной среде слабее, чем в вакууме; ԑ = ԑₐ/ԑ₀ часто называют комплексная диэлектрическая проницаемость. Численное значение величины ԑ₀, а также ее размерность зависимы от того, какая система единиц выбрана; а значение ԑ - не зависит. Так, в системе СГСЭ ԑ₀ = 1 (эта четвертая основная единица); в системе СИ диэлектрическая проницаемость вакуума выражается:

ԑ₀ = 1/(4π˖9˖10⁹) фарада/метр = 8,85˖10⁻¹² ф/м (в этой системе ԑ₀ является производной величиной).

Лекция №19

  1. Природа электропроводности газообразных, жидких и твердых диэлектриков

Диэлектрическая проницаемость

Относительная диэлектрическая проницаемость, или диэлектрическая проницаемость ε - один из важнейших макроскопических электрических параметров диэлектрика. Диэлектрическая проницаемость ε количественно характеризует способность диэлектрика поляризоваться в электрическом поле, а также оценивает степень его полярности; ε является константой диэлектрического материала при данной температуре и частоте электрического напряжения и показывает, во сколько раз заряд конденсатора с диэлектриком больше заряда конденсатора тех же размеров с вакуумом.

Диэлектрическая проницаемость определяет величину электрической емкости изделия (конденсатора, изоляции кабеля и т.п.). Для плоского конденсатора электрическая емкость С, Ф, выражается формулой (1)

где S- площадь измерительного электрода, м 2 ; h - толщина диэлектрика, м. Из формулы (1) видно, что чем больше величина ε используемого диэлектрика, тем больше электрическая емкость конденсатора при тех же габаритах. В свою очередь, электрическая емкость С является коэффициентом пропорциональности между поверхностным зарядом QК, накопленным конденсатором, и приложенным к нему электрическим на-

пряжением U (2):

Из формулы (2) следует, что электрический заряд QК, накопленный конденсатором, пропорционален величине ε диэлектрика. Зная игеометрические размеры конденсатора, можно определить ε диэлектрического материала для данного напряжения.

Рассмотрим механизм образования заряда на электродах конденсатора с диэлектриком и из каких составляющих складывается этот заряд. Для этого возьмем два плоских конденсатора одинаковых геометрических размеров: один - с вакуумом, другой - с межэлектродным пространством, заполненным диэлектриком, и подадим на них одинаковое электрическое напряжение U (рис. 1). На электродах первого конденсатора образуется заряд Q0 , на электродах второго - . В свою очередь, заряд является суммой зарядов Q0 и Q (3):

Заряд Q 0 образован внешним полем Е0 путем накопления на электродах конденсатора сторонних зарядов с поверхностной плотностью σ 0 . Q - это дополнительный заряд на электродах конденсатора, создаваемый источником электрического напряжения для компенсации связанных зарядов, образовавшихся на поверхности диэлектрика.

В равномерно поляризованном диэлектрике заряд Q соответствует величине поверхностной плотности связанных зарядов σ. Заряд σ образует поле Е сз, направленное противоположно полю Е О.

Диэлектрическую проницаемость рассматриваемого диэлектрика можно представить как отношение заряда конденсатора, заполненного диэлектриком, к заряду Q0 такого же конденсатора с вакуумом (3):

Из формулы (3) следует, что диэлектрическая проницаемость ε - величина безразмерная, и у любого диэлектрика она больше единицы; в случае вакуума ε = 1. Из рассмотренного примера также

видно, что плотность заряда на электродах конденсатора с диэлектриком в ε раз больше плотности заряда на электродах конденсатора с вакуумом, а напряженности при одинаковых напряжениях для обо

их конденсаторов одинаковы и зависят только от величины напряжения U и расстояния между электродами (Е = U /h).

Кроме относительной диэлектрической проницаемости ε различают абсолютную диэлектрическую проницаемость ε а , Ф/м, (4)

которая не имеет физического смысла и используется в электротехнике.

Относительное изменение диэлектрической проницаемости εr при повышении температуры на 1 К называется температурным коэффициентом диэлектрической проницаемости.

ТКε = 1/ εr d εr/dT К-1 Для воздуха при 20°С ТК εr = -2.10-6К-

Электрическое старение в сегнетоэлектриках выражается в уменьшении εr со временем. Причиной является перегруппировка доменов.

Особенно резкое изменение диэлектрической проницаемости со временем наблюдается при температурах, близких к точке Кюри. Нагревание сегнетоэлектриков до температуры более точки Кюри и последующее охлаждение возвращает εr к прежнему значению. Такое же восстановление диэлектрической проницаемости можно осуществить, воздействуя на сегнетоэлектрик электрическим полем повышенной напряженности.

Для сложных диэлектриков – механической смеси двух компонентов с разным εr в первом приближении: εrх = θ1 · εr1х ·θ· εr2х,где θ – обьемная концентрация компонентов смеси, εr - относительная диэлектрическая проницаемость компонента смеси.

Поляризация диэлектрика может быть вызвана: механическими нагрузками (пьезополяризация в пьезоэлектриках); нагревом (пирополяризация в пироэлектриках); светом (фотополяризация).

Поляризованное состояние диэлектрика в электрическом поле Е характеризуется электрическим моментом единицы объема, поляризованностью Р, Кл/м2, которая связана с его относительной диэлектрической проницаемостью eг: Р = e0 (eг - 1)Е, где e0 = 8,85∙10-12 Ф/м. Произведение e0∙eг =e, Ф/м, называют абсолютной диэлектрической проницаемостью. В газообразных диэлектриках eг мало отличается от 1,0, в неполярных жидких и твердых достигает 1,5 - 3,0, в полярных имеет большие значения; в ионных кристаллах eг - 5-МО, а в имеющих перовскитовую кристаллическую решетку достигает 200; в сегнетоэлектриках eг - 103 и больше.

В неполярных диэлектриках с ростом температуры eг незначительно уменьшается, в полярных изменения связаны с преобладанием того или иного вида поляризации, в ионных кристаллах увеличивается, в некоторых сегнетоэлектриках при температуре Кюри достигает 104 и больше. Температурные изменения eг характеризуют температурным коэффициентом. Для полярных диэлектриков характерным является уменьшение eг в области частот, где время т на поляризацию соизмеримо с Т/2.


Похожая информация.


ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ

Диэлектрическая проницаемость среды ε c есть величина, характеризующая влияние среды на силы взаимодействия электрических полей. Различные среды имеют различные значения ε c .

Абсолютная диэлектрическая проницаемость вакуума называется электрической постоянной ε 0 =8,85 10 -12 ф/м.

Отношение абсолютной диэлектрической проницаемости среды к электрической постоянной называют относительной диэлектрической проницаемостью

т.е. относительная диэлектрическая проницаемость ε - это величина показывающая, во сколько раз абсолютная диэлектрическая проницаемость среды больше электрической постоянной. Величина ε размерности не имеет.

Таблица 1

Относительная диэлектрическая проницаемость изоляционных материалов

Как видно из таблицы у большинства диэлектриков ε = 1-10и мало зависит от электрических условий и температуры среды.

Существует группа диэлектриков, называемых сегнетоэлектриками , в которых ε может достигать значений до 10 000, причем ε сильно зависит от внешнего поля и температуры. К сегнетоэлектрикам относятся титанат бария, титанат свинца, сегнетова соль и др.

Контрольные вопросы

1. Каково строение атома алюминия, меди?

2. В каких единицах измеряются размеры атомов и их частиц?

3. Какой электрический заряд имеют электроны?

4. Почему в обычном состоянии вещества электрически нейтральны?

5. Что называется электрическим полем и как оно условно изображается?

6. От чего зависит сила взаимодействия между электрическими зарядами?

7. Почему одни материалы являются проводниками, а другие изоляторами?

8. Какие материалы относятся к проводника, а какие к изоляторам?

9. Как можно зарядить тело положительным электричеством?

10. Что называется относительной диэлектрической проницаемостью?