Ранг единичной матрицы равен. Вычисление ранга матрицы с помощью элементарных преобразований

Любая матрица A порядка m×n можно рассматривать как совокупность m векторов строк или n векторов столбцов .

Рангом матрицы A порядка m×n называется максимальное количество линейно независимых векторов столбцов или векторов строк.

Если ранг матрицы A равен r , то пишется:

Нахождение ранга матрицы

Пусть A произвольная матрица порядка m ×n . Для нахождения ранга матрицы A применим к ней метод исключения Гаусса.

Отметим, что если на каком-то этапе исключения ведущий элемент окажется равным нулю, то меняем местами данную строку со строкой, в котором ведущий элемент отличен от нуля. Если окажется, что нет такой строки, то переходим к следующему столбцу и т.д.

После прямого хода исключения Гаусса получим матрицу, элементы которой под главной диагональю равны нулю. Кроме этого могут оказаться нулевые векторы строки.

Количество ненулевых векторов строк и будет рангом матрицы A .

Рассмотрим все это на простых примерах.

Пример 1.

Умножив первую строку на 4 и прибавив ко второй строке и умножив первую строку на 2 и прибавив к третьей строке имеем:

Вторую строку умножим на -1 и прибавим к третьей строке:

Получили две ненулевые строки и, следовательно ранг матрицы равен 2.

Пример 2.

Найдем ранг следующей матрицы:

Умножим первую строку на -2 и прибавим ко второй строке. Аналогично обнулим элементы третьей и четвертой строки первого столбца:

Обнулим элементы третьей и четвертой строк второго столбца прибавляя соответствующие строки ко второй строке умноженной на число -1.

Рангом матрицы называется наибольший порядок ее миноров, отличных от нуля. Ранг матрицы обозначают или .

Если все миноры порядка данной матрицы равны нулю, то все миноры более высокого порядка данной матрицы также равны нулю. Это следует из определения определителя. Отсюда вытекает алгоритм нахождения ранга матрицы.

Если все миноры первого порядка (элементы матрицы ) равны нулю, то . Если хотя бы один из миноров первого порядка отличен от нуля, а все миноры второго порядка равны нулю, то . Причем, достаточно просмотреть только те миноры второго порядка, которые окаймляют ненулевой минор первого порядка. Если найдется минор второго порядка отличный от нуля, исследуют миноры третьего порядка, окаймляющие ненулевой минор второго порядка. Так продолжают до тех пор, пока не придут к одному из двух случаев: либо все миноры порядка , окаймляющие ненулевой минор -го порядка равны нулю, либо таких миноров нет. Тогда .

Пример 10. Вычислить ранг матрицы .

Минор первого порядка (элемент ) отличен от нуля. Окаймляющий его минор тоже не равен нулю.

Все эти миноры равны нулю, значит .

Приведенный алгоритм нахождения ранга матрицы не всегда удобен, поскольку связан с вычислением большого числа определителей. Наиболее удобно пользоваться при вычислении ранга матрицы элементарными преобразованиями, при помощи которых матрица приводится к столь простому виду, что очевидно, чему равен ее ранг.

Элементарными преобразованиями матрицы называют следующие преобразования:

Ø умножение какой-нибудь строки (столбца) матрица на число, отличное от нуля;

Ø прибавление к одной строке (столбцу) другой строки (столбца), умноженной на произвольное число.

Полужордановым преобразованием строк матрицы:

с разрешающим элементом называется следующая совокупность преобразований со строками матрицы:

Ø к первой строке прибавить ю, умноженную на число и т.д.;

Ø к последней строке прибавить ю, умноженную на число .

Полужордановым преобразованием столбцов матрицы с разрешающим элементом называется следующая совокупность преобразований со столбцами матрицы:

Ø к первму столбцу прибавить й, умноженный на число и т.д.;

Ø к последнему столбцу прибавить й, умноженный на число .

После выполнения этих преобразований получается матрица:

Полужорданово преобразование строк или столбцов квадратной матрицы не изменяет ее определителя.

Элементарные преобразования матрицы не изменяют ее ранга. Покажем на пример, как вычислить ранг матрицы, пользуясь элементарными преобразованиями. строк (столбцов) линейно зависимы.


Ранг матрицы представляет собой важную числовую характеристику. Наиболее характерной задачей, требующей нахождения ранга матрицы, является проверка совместности системы линейных алгебраических уравнений. В этой статье мы дадим понятие ранга матрицы и рассмотрим методы его нахождения. Для лучшего усвоения материала подробно разберем решения нескольких примеров.

Навигация по странице.

Определение ранга матрицы и необходимые дополнительные понятия.

Прежде чем озвучить определение ранга матрицы, следует хорошо разобраться с понятием минора, а нахождение миноров матрицы подразумевает умение вычисления определителя. Так что рекомендуем при необходимости вспомнить теорию статьи методы нахождения определителя матрицы, свойства определителя.

Возьмем матрицу А порядка . Пусть k – некоторое натуральное число, не превосходящее наименьшего из чисел m и n , то есть, .

Определение.

Минором k-ого порядка матрицы А называется определитель квадратной матрицы порядка , составленной из элементов матрицы А , которые находятся в заранее выбранных k строках и k столбцах, причем расположение элементов матрицы А сохраняется.

Другими словами, если в матрице А вычеркнуть (p–k) строк и (n–k) столбцов, а из оставшихся элементов составить матрицу, сохраняя расположение элементов матрицы А , то определитель полученной матрицы есть минор порядка k матрицы А .

Разберемся с определением минора матрицы на примере.

Рассмотрим матрицу .

Запишем несколько миноров первого порядка этой матрицы. К примеру, если мы выберем третью строку и второй столбец матрицы А , то нашему выбору соответствует минор первого порядка . Иными словами, для получения этого минора мы вычеркнули первую и вторую строки, а также первый, третий и четвертый столбцы из матрицы А , а из оставшегося элемента составили определитель. Если же выбрать первую строку и третий столбец матрицы А , то мы получим минор .

Проиллюстрируем процедуру получения рассмотренных миноров первого порядка
и .

Таким образом, минорами первого порядка матрицы являются сами элементы матрицы.

Покажем несколько миноров второго порядка. Выбираем две строки и два столбца. К примеру, возьмем первую и вторую строки и третий и четвертый столбец. При таком выборе имеем минор второго порядка . Этот минор также можно было составить вычеркиванием из матрицы А третьей строки, первого и второго столбцов.

Другим минором второго порядка матрицы А является .

Проиллюстрируем построение этих миноров второго порядка
и .

Аналогично могут быть найдены миноры третьего порядка матрицы А . Так как в матрице А всего три строки, то выбираем их все. Если к этим строкам выбрать три первых столбца, то получим минор третьего порядка

Он также может быть построен вычеркиванием последнего столбца матрицы А .

Другим минором третьего порядка является

получающийся вычеркиванием третьего столбца матрицы А .

Вот рисунок, показывающий построение этих миноров третьего порядка
и .

Для данной матрицы А миноров порядка выше третьего не существует, так как .

Сколько же существует миноров k-ого порядка матрицы А порядка ?

Число миноров порядка k может быть вычислено как , где и - число сочетаний из p по k и из n по k соответственно.

Как же построить все миноры порядка k матрицы А порядка p на n ?

Нам потребуется множество номеров строк матрицы и множество номеров столбцов . Записываем все сочетания из p элементов по k (они будут соответствовать выбираемым строкам матрицы А при построении минора порядка k ). К каждому сочетанию номеров строк последовательно добавляем все сочетания из n элементов по k номеров столбцов. Эти наборы сочетаний номеров строк и номеров столбцов матрицы А помогут составить все миноры порядка k .

Разберем на примере.

Пример.

Найдите все миноры второго порядка матрицы .

Решение.

Так как порядок исходной матрицы равен 3 на 3, то всего миноров второго порядка будет .

Запишем все сочетания из 3 по 2 номеров строк матрицы А : 1, 2 ; 1, 3 и 2, 3 . Все сочетания из 3 по 2 номеров столбцов есть 1, 2 ; 1, 3 и 2, 3 .

Возьмем первую и вторую строки матрицы А . Выбрав к этим строкам первый и второй столбцы, первый и третий столбцы, второй и третий столбцы, получим соответственно миноры

Для первой и третьей строк при аналогичном выборе столбцов имеем

Осталось ко второй и третьей строкам добавить первый и второй, первый и третий, второй и третий столбцы:

Итак, все девять миноров второго порядка матрицы А найдены.

Сейчас можно переходить к определению ранга матрицы.

Определение.

Ранг матрицы – это наивысший порядок минора матрицы, отличного от нуля.

Ранг матрицы А обозначают как Rank(A) . Можно также встретить обозначения Rg(A) или Rang(A) .

Из определений ранга матрицы и минора матрицы можно заключить, что ранг нулевой матрицы равен нулю, а ранг ненулевой матрицы не меньше единицы.

Нахождение ранга матрицы по определению.

Итак, первым методом нахождения ранга матрицы является метод перебора миноров . Этот способ основан на определении ранга матрицы.

Пусть нам требуется найти ранг матрицы А порядка .

Вкратце опишем алгоритм решения этой задачи способом перебора миноров.

Если есть хотя бы один элемент матрицы, отличный от нуля, то ранг матрицы как минимум равен единице (так как есть минор первого порядка, не равный нулю).

Далее перебираем миноры второго порядка. Если все миноры второго порядка равны нулю, то ранг матрицы равен единице. Если существует хотя бы один ненулевой минор второго порядка, то переходим к перебору миноров третьего порядка, а ранг матрицы как минимум равен двум.

Аналогично, если все миноры третьего порядка равны нулю, то ранг матрицы равен двум. Если существует хотя бы один минор третьего порядка, отличный от нуля, то ранг матрицы как минимум равен трем, а мы преступаем к перебору миноров четвертого порядка.

Отметим, что ранг матрицы не может превышать наименьшего из чисел p и n .

Пример.

Найдите ранг матрицы .

Решение.

Так как матрица ненулевая, то ее ранг не меньше единицы.

Минор второго порядка отличен от нуля, следовательно, ранг матрицы А не меньше двух. Переходим к перебору миноров третьего порядка. Всего их штук.




Все миноры третьего порядка равны нулю. Поэтому, ранг матрицы равен двум.

Ответ:

Rank(A) = 2 .

Нахождение ранга матрицы методом окаймляющих миноров.

Существуют другие методы нахождения ранга матрицы, которые позволяют получить результат при меньшей вычислительной работе.

Одним из таких методов является метод окаймляющих миноров .

Разберемся с понятием окаймляющего минора .

Говорят, что минор М ок (k+1)-ого порядка матрицы А окаймляет минор M порядка k матрицы А , если матрица, соответствующая минору М ок , «содержит» матрицу, соответствующую минору M .

Другими словами, матрица, соответствующая окаймляемому минору М , получается из матрицы, соответствующей окаймляющему минору M ок , вычеркиванием элементов одной строки и одного столбца.

Для примера рассмотрим матрицу и возьмем минор второго порядка . Запишем все окаймляющие миноры:

Метод окаймляющих миноров обосновывается следующей теоремой (приведем ее формулировку без доказательства).

Теорема.

Если все миноры, окаймляющие минор k-ого порядка матрицы А порядка p на n , равны нулю, то все миноры порядка (k+1) матрицы А равны нулю.

Таким образом, для нахождения ранга матрицы не обязательно перебирать все миноры, достаточно окаймляющих. Количество миноров, окаймляющих минор k -ого порядка матрицы А порядка , находится по формуле . Отметим, что миноров, окаймляющих минор k-ого порядка матрицы А , не больше, чем миноров (k + 1)-ого порядка матрицы А . Поэтому, в большинстве случаев использование метода окаймляющих миноров выгоднее простого перебора всех миноров.

Перейдем к нахождению ранга матрицы методом окаймляющих миноров. Кратко опишем алгоритм этого метода.

Если матрица А ненулевая, то в качестве минора первого порядка берем любой элемент матрицы А , отличный от нуля. Рассматриваем его окаймляющие миноры. Если все они равны нулю, то ранг матрицы равен единице. Если же есть хотя бы один ненулевой окаймляющий минор (его порядок равен двум), то переходим к рассмотрению его окаймляющих миноров. Если все они равны нулю, то Rank(A) = 2 . Если хотя бы один окаймляющий минор отличен от нуля (его порядок равен трем), то рассматриваем его окаймляющие миноры. И так далее. В итоге Rank(A) = k , если все окаймляющие миноры (k + 1)-ого порядка матрицы А равны нулю, либо Rank(A) = min(p, n) , если существует ненулевой минор, окаймляющий минор порядка (min(p, n) – 1) .

Разберем метод окаймляющих миноров для нахождения ранга матрицы на примере.

Пример.

Найдите ранг матрицы методом окаймляющих миноров.

Решение.

Так как элемент a 1 1 матрицы А отличен от нуля, то возьмем его в качестве минора первого порядка. Начнем поиск окаймляющего минора, отличного от нуля:

Найден окаймляющий минор второго порядка, отличный от нуля . Переберем его окаймляющие миноры (их штук):

Все миноры, окаймляющие минор второго порядка , равны нулю, следовательно, ранг матрицы А равен двум.

Ответ:

Rank(A) = 2 .

Пример.

Найдите ранг матрицы с помощью окаймляющих миноров.

Решение.

В качестве отличного от нуля минора первого порядка возьмем элемент a 1 1 = 1 матрицы А . Окаймляющий его минор второго порядка не равен нулю. Этот минор окаймляется минором третьего порядка
. Так как он не равен нулю и для него не существует ни одного окаймляющего минора, то ранг матрицы А равен трем.

Ответ:

Rank(A) = 3 .

Нахождение ранга с помощью элементарных преобразований матрицы (методом Гаусса).

Рассмотрим еще один способ нахождения ранга матрицы.

Следующие преобразования матрицы называют элементарными:

  • перестановка местами строк (или столбцов) матрицы;
  • умножение всех элементов какой-либо строки (столбца) матрицы на произвольное число k , отличное от нуля;
  • прибавление к элементам какой-либо строки (столбца) соответствующих элементов другой строки (столбца) матрицы, умноженных на произвольное число k .

Матрица В называется эквивалентной матрице А , если В получена из А с помощью конечного числа элементарных преобразований. Эквивалентность матриц обозначается символом « ~ » , то есть, записывается A ~ B .

Нахождение ранга матрицы с помощью элементарных преобразований матрицы основано на утверждении: если матрица В получена из матрицы А с помощью конечного числа элементарных преобразований, то Rank(A) = Rank(B) .

Справедливость этого утверждения следует из свойств определителя матрицы:

  • При перестановке строк (или столбцов) матрицы ее определитель меняет знак. Если он равен нулю, то при перестановке строк (столбцов) он остается равным нулю.
  • При умножении всех элементов какой-либо строки (столбца) матрицы на произвольное число k отличное от нуля, определитель полученной матрицы равен определителю исходной матрицы, умноженному на k . Если определитель исходной матрицы равен нулю, то после умножения всех элементов какой-либо строки или столбца на число k определитель полученной матрицы также будет равен нулю.
  • Прибавление к элементам некоторой строки (столбца) матрицы соответствующих элементов другой строки (столбца) матрицы, умноженных на некоторое число k , не изменяет ее определителя.

Суть метода элементарных преобразований заключается в приведении матрицы, ранг которой нам требуется найти, к трапециевидной (в частном случае к верхней треугольной) с помощью элементарных преобразований.

Для чего это делается? Ранг матриц такого вида очень легко найти. Он равен количеству строк, содержащих хотя бы один ненулевой элемент. А так как ранг матрицы при проведении элементарных преобразований не изменяется, то полученное значение будет рангом исходной матрицы.

Приведем иллюстрации матриц, одна из которых должна получиться после преобразований. Их вид зависит от порядка матрицы.


Эти иллюстрации являются шаблонами, к которым будем преобразовывать матрицу А .

Опишем алгоритм метода .

Пусть нам требуется найти ранг ненулевой матрицы А порядка (p может быть равно n ).

Итак, . Умножим все элементы первой строки матрицы А на . При этом получим эквивалентную матрицу, обозначим ее А (1) :

К элементам второй строки полученной матрицы А (1) прибавим соответствующие элементы первой строки, умноженные на . К элементам третьей строки прибавим соответствующие элементы первой строки, умноженные на . И так далее до p-ой строки. Получим эквивалентную матрицу, обозначим ее А (2) :

Если все элементы полученной матрицы, находящиеся в строках со второй по p-ую , равны нулю, то ранг этой матрицы равен единице, а, следовательно, и ранг исходной матрицы равен единице.

Если же в строках со второй по p-ую есть хотя бы один ненулевой элемент, то продолжаем проводить преобразования. Причем действуем абсолютно аналогично, но лишь с отмеченной на рисунке частью матрицы А (2)

Если , то переставляем строки и (или) столбцы матрицы А (2) так, чтобы «новый» элемент стал ненулевым.

Определение. Рангом матрицы называется максимальное число линейно независимых строк, рассматриваемых как векторы.

Теорема 1 о ранге матрицы. Рангом матрицы называется максимальный порядок отличного от нуля минора матрицы.

Понятие минора мы уже разбирали на уроке по определителям , а сейчас обобщим его. Возьмём в матрице сколько-то строк и сколько-то столбцов, причём это "сколько-то" должно быть меньше числа строк и стобцов матрицы, а для строк и столбцов это "сколько-то" должно быть одним и тем же числом. Тогда на пересечении скольки-то строк и скольки-то столбцов окажется матрица меньшего порядка, чем наша исходная матрица. Определитель это матрицы и будет минором k-го порядка, если упомянутое "сколько-то" (число строк и столбцов) обозначим через k.

Определение. Минор (r +1)-го порядка, внутри которого лежит выбранный минор r -го порядка, называется называется окаймляющим для данного минора.

Наиболее часто используются два способа отыскания ранга матрицы . Это способ окаймляющих миноров и способ элементарных преобразований (методом Гаусса).

При способе окаймляющих миноров используется следующая теорема.

Теорема 2 о ранге матрицы. Если из элементов матрицы можно составить минор r -го порядка, не равный нулю, то ранг матрицы равен r .

При способе элементарных преобразований используется следующее свойство:

Если путём элементарных преобразований получена трапециевидная матрица, эквивалентная исходной, то рангом этой матрицы является число строк в ней кроме строк, полностью состоящих из нулей.

Отыскание ранга матрицы способом окаймляющих миноров

Окаймляющим минором называется минор большего порядка по отношению к данному, если этот минорм большего порядка содержит в себе данный минор.

Например, дана матрица

Возьмём минор

окаймляющими будут такие миноры:

Алгоритм нахождения ранга матрицы следующий.

1. Находим не равные нулю миноры второго порядка. Если все миноры второго порядка равны нулю, то ранг матрицы будет равен единице (r =1 ).

2. Если существует хотя бы один минор второго порядка, не равный нулю, то составляем окаймляющие миноры третьего порядка. Если все окаймляющие миноры третьего порядка равны нулю, то ранг матрицы равен двум (r =2 ).

3. Если хотя бы один из окаймляющих миноров третьего порядка не равен нулю, то составляем окаймляющие его миноры. Если все окаймляющие миноры четвёртого порядка равны нулю, то ранг матрицы равен трём (r =2 ).

4. Продолжаем так, пока позволяет размер матрицы.

Пример 1. Найти ранг матрицы

.

Решение. Минор второго порядка .

Окаймляем его. Окаймляющих миноров будет четыре:

,

,

Таким образом, все окаймляющие миноры третьего порядка равны нулю, следовательно, ранг данной матрицы равен двум (r =2 ).

Пример 2. Найти ранг матрицы

Решение. Ранг данной матрицы равен 1, так как все миноры второго порядка этой матрицы равны нулю (в этом, как и в случаях окаймляющих миноров в двух следующих примерах, дорогим студентам предлагается убедиться самостоятельно, возможно, используя правила вычисления определителей), а среди миноров первого порядка, то есть среди элементов матрицы, есть не равные нулю.

Пример 3. Найти ранг матрицы

Решение. Минор второго порядка этой матрицы , в все миноры третьего порядка этой матрицы равны нулю. Следовательно, ранг данной матрицы равен двум.

Пример 4. Найти ранг матрицы

Решение. Ранг данной матрицы равен 3, так как единственный минор третьего порядка этой матрицы равен 3.

Отыскание ранга матрицы способом элементарных преобразований (методом Гаусса)

Уже на примере 1 видно, что задача определения ранга матрицы способом окаймляющих миноров требует вычисления большого числа определителей. Существует, однако, способ, позволяющий свести объём вычислений к минимуму. Этот способ основан на использовании элементарных преобразований матриц и ещё называется также методом Гаусса.

Под элементарными преобразованиями матрицы понимаются следующие операции:

1) умножение какой-либо строки или какого либо столбца матрицы на число, отличное от нуля;

2) прибавление к элементам какой-либо строки или какого-либо столбца матрицы соответствующих элементов другой строки или столбца, умноженных на одно и то же число;

3) перемена местами двух строк или столбцов матрицы;

4) удаление "нулевых" строк, то есть таких, все элементы которых равны нулю;

5) удаление всех пропорциональных строк, кроме одной.

Теорема. При элементарном преобразовании ранг матрицы не меняется. Другими словами, если мы элементарными преобразованиями от матрицы A перешли к матрице B , то .

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными , если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.

Канонической матрицей называется матрица, у которой в начале главной диагонали стоят подряд несколько единиц (число которых может равняться нулю), а все остальные элементы равны нулю, например,

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Пример 2 Найти ранг матрицы

А=

и привести ее к каноническому виду.

Решение. Из второй строки вычтем первую и переставим эти строки:

.

Теперь из второй и третьей строк вычтем первую, умноженную соответственно на 2 и 5:

;

из третьей строки вычтем первую; получим матрицу

В = ,

которая эквивалентна матрице А, так как получена из нее с помощью конечного множества элементарных преобразований. Очевидно, что ранг матрицы В равен 2, а следовательно, и r(A)=2. Матрицу В легко привести к канонической. Вычитая первый столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы первой строки, кроме первого, причем элементы остальных строк не изменяются. Затем, вычитая второй столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы второй строки, кроме второго, и получим каноническую матрицу:

.

Теоре́ма Кро́некера - Капе́лли - критерий совместности системы линейных алгебраических уравнений:

Для того чтобы линейная система являлась совместной, необходимо и достаточно, что бы ранг расширенной матрицы этой системы был равен рангу ее основной матрицы.

Доказательство (условия совместности системы)

Необходимость

Пусть система совместна. Тогда существуют числа такие, что . Следовательно, столбец является линейной комбинацией столбцов матрицы . Из того, что ранг матрицы не изменится, если из системы его строк (столбцов) вычеркнуть или приписать строку (столбец), которая является линейной комбинацией других строк (столбцов) следует, что .

Достаточность

Пусть . Возьмем в матрице какой-нибудь базисный минор. Так как , то он же и будет базисным минором и матрицы . Тогда, согласно теореме о базисном миноре , последний столбец матрицы будет линейной комбинацией базисных столбцов, то есть столбцов матрицы . Следовательно, столбец свободных членов системы является линейной комбинацией столбцов матрицы .

Следствия

    Количество главных переменных системы равно рангу системы.

    Совместная система будет определена (её решение единственно), если ранг системы равен числу всех её переменных.

Однородная система уравнений

Предложение 15 . 2 Однородная система уравнений

всегда является совместной.

Доказательство . Для этой системы набор чисел , , , является решением.

В этом разделе мы будем использовать матричную запись системы: .

Предложение 15 . 3 Сумма решений однородной системы линейных уравнений является решением этой системы. Решение, умноженное на число, тоже является решением.

Доказательство . Пусть и служат решениями системы . Тогда и . Пусть . Тогда

Так как , то -- решение.

Пусть -- произвольное число, . Тогда

Так как , то -- решение.

Следствие 15 . 1 Если однородная система линейных уравнений имеет ненулевое решение, то она имеет бесконечно много различных решений.

Действительно, умножая ненулевое решение на различные числа, будем получать различные решения.

Определение 15 . 5 Будем говорить, что решения системы образуют фундаментальную систему решений , если столбцы образуют линейно независимую систему и любое решение системы является линейной комбинацией этих столбцов.