На какие органы действует ионизирующее излучение. Ионизирующее излучение: виды и действие на организм человека

Радиоактивные вещества (РВ) могут проникать в организм тремя путями: с вдыхаемым воздухом, через желудочно-кишечный тракт (с пищей и водой), через кожу. Человек получает облучение не только снаружи, но и через внутренние органы. РВ проникают в молекулы внутренних органов, особенно костной ткани и мышц. Концентрируясь в них, РВ продолжают облучать и повреждать организм изнутри.

Радиационный риск — вероятность возникновения у человека или его потомства какого-либо вредного эффекта в результате облучения.

Ионизирующая радиация при воздействии на организм человека может вызывать неблагоприятные эффекты двух видов:

Детерминированные (лучевая болезнь, лучевой дерматит, лучевая катаракта, лучевое бесплодие, аномалии в развитии плода и др.). Предполагается существование дозового порога, ниже которого эффект отсутствует, а выше которого тяжесть эффекта зависит от дозы;

Стохастические вероятностные беспороговые вредные биологические эффекты (злокачественные опухоли, лейкозы, наследственные болезни), не имеющие дозового порога возникновения. Тяжесть их проявления не зависит от дозы. Период возникновения этих эффектов у облученного человека составляет от 2 до 50 лет и более.

Биологическое действие ионизирующих излучений связано с образованием новых, не свойственных для организма соединений, нарушающих деятельность как отдельных функций, так и целых систем организма. Частично идут процессы восстановления структур организма. От интенсивности этих процессов зависит общий результат восстановления. С увеличением мощности излучения значимость процессов восстановления уменьшается.

Различают генетические (наследственные) и соматические (телесные) вредные эффекты.

Генетические эффекты связаны с изменением генного аппарата под действием ионизирующих излучений. Последствиями этого являются мутации (появления у облученных людей потомства с иными признаками, часто с врожденными уродствами).

Генетические эффекты имеют длительный скрытый период (десятки лет после облучения). Такая опасность существует даже при очень слабом облучении, которое, хотя и не разрушает клетки, но способно изменить наследственные свойства.

Соматические эффекты всегда начинаются с определенной пороговой дозы. При дозах, меньших, чем пороговые, повреждения организма не происходит. К соматическим эффектам относят местные повреждения кожи (лучевой ожог), катаракту глаз (помутнение хрусталика), повреждение половых органов (кратковременная или постоянная стерилизация). Организм способен преодолевать многие соматические последствия облучения.

Степень лучевого поражения в значительной мере зависит от размеров облучаемой поверхности, от того, подвергалось ли облучению все тело или только часть его. С ее сокращением уменьшается и биологический эффект.

Длительное облучение малыми дозами (хроническое) в рабочей среде может привести к развитию хронической лучевой болезни. Наиболее характерными признаками хронической лучевой болезни являются изменения формулы крови, локальные поражения кожи, поражения хрусталика, пневмосклероз, снижение иммунитета. Способность вызывать отдаленные последствия — одно из коварных свойств ионизирующего излучения.

Основное действие всех ионизирующих излучений на организм сводится к ионизации тканей тех органов и систем, которые подвергаются их облучению. Приобретенные в результате этого заряды являются причиной возникновения несвойственных для нормального состояния окислительных реакций в клетках, которые, в свою очередь, вызывают ряд ответных реакций. Таким образом, в облучаемых тканях живого организма происходит серия цепных реакций, нарушающих нормальное функциональное состояние отдельных органов, систем и организма в целом. Есть предположение, что в результате таких реакций в тканях организма образуются вредные для здоровья продукты -- токсины, которые и оказывают неблагоприятное влияние.

При работе с продуктами, обладающими ионизирующими излучениями, пути воздействия последних могут быть двоякими: посредством внешнего и внутреннего облучения. Внешнее облучение может иметь место при работах на ускорителях, рентгеновских аппаратах и других установках, излучающих нейтроны и рентгеновские лучи, а также при работах с закрытыми радиоактивными источниками, то есть радиоактивными элементами, запаянными в стеклянные или другие глухие ампулы, если последние остаются неповрежденными. Источники бетта- и гамма-излучений могут представлять опасность как внешнего, так и внутреннего облучения. aльфа-излучения практически представляют опасность лишь при внутреннем облучении, так как вследствие весьма малой проникающей способности и малого пробега альфа-частиц в воздушной среде незначительное удаление от источника излучения или небольшое экранирование устраняют опасность внешнего облучения.

При внешнем облучении лучами со значительной проникающей способностью ионизация происходит не только на облучаемой поверхности кожных и других покровов, но и в более глубоких тканях, органах и системах. Период непосредственного внешнего воздействия ионизирующих излучений -- экспозиция -- определяется временем облучения.

Внутреннее облучение происходит при попадании радиоактивных веществ внутрь организма, что может произойти при вдыхании паров, газов и аэрозолей радиоактивных веществ, занесении.их в пищеварительный тракт или попадании в ток крови (в случаях загрязнения ими поврежденных кожи и слизистых). Внутреннее облучение более опасно, так как, во-первых, при непосредственном контакте с тканями даже излучения незначительных энергий и с минимальной проникающей способностью все же оказывают действие на эти ткани; во-вторых, при нахождении радиоактивного вещества в организме продолжительность его воздействия (экспозиция), не ограничивается временем непосредственной работы с источниками, а продолжается непрерывна до его полного распада или выведения из организма. Кроме того, при попадании внутрь некоторые радиоактивные вещества, обладая определенными токсическими свойствами, кроме ионизации, оказывают местное или общее токсическое действие (см. «Вредные химические вещества»).

В организме радиоактивные вещества, как и все остальные продукты, разносятся кровотоком по всем органам и системам, после чего частично выводятся из организма через выделительные системы (желудочно-кишечный тракт, почки, потовые и молочные железы и др.), а некоторая их часть отлагается в определенных органах и системах, оказывая на них преимущественное, более выраженное действие. Некоторые же радиоактивные вещества (например, натрий -- Na24) распределяются по всему организму относительно равномерно. Преимущественное отложение различных веществ в тех или иных органах и системах определяется их физико-химическими свойствами и функциями этих органов и систем.

Комплекс стойких изменений в организме под воздействием ионизирующих излучений называется лучевой болезнью. Лучевая болезнь может развиться как вследствие хронического воздействия ионизирующих излучений, так и при кратковременном облучении значительными дозами. Она характеризуется главным образом изменениями со стороны центральной нервной системы (подавленное состояние, головокружение, тошнота, общая слабость и др.), крови и кроветворных органов, кровеносных сосудов (кровоподтеки вследствие ломкости сосудов), желез внутренней секреции.

В результате длительных воздействий значительных доз ионизирующего излучения могут развиваться злокачественные новообразования различных органов и тканей, которые: являются отдаленными последствиями этого воздействия. К числу последних можно отнести также понижение сопротивляемости организма различным инфекционным и другим заболеваниям, неблагоприятное влияние на детородную функцию и другие.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Введение

Природное ионизирующее излучение присутствует повсюду. Оно поступает из космоса в виде космических лучей. Оно есть в воздухе в виде излучений радиоактивного радона и его вторичных частиц. Радиоактивные изотопы естественного происхождения проникают с пищей и водой во все живые организмы и остаются в них. Ионизирующего излучения невозможно избежать. Естественный радиоактивный фон существовал на Земле всегда, и жизнь зародилась в поле его излучений, а затем - много-много позже - появился и человек. Эта природная (естественная) радиация сопровождает нас в течение всей жизни.

Физическое явление радиоактивности было открыто в 1896 г., и сегодня оно широко применяется во многих областях. Несмотря на радиофобию, атомные электростанции играют важную роль в энергетике многих странах. Рентгеновское излучение используется в медицине для диагностики внутренних повреждений и заболеваний. Ряд радиоактивных веществ используется в виде меченых атомов для исследования функционирования внутренних органов и изучения процессов обмена веществ. Для лечения рака методами лучевой терапии используются гамма-излучение и другие виды ионизирующих излучений. Радиоактивные вещества широко используются в различных приборах контроля, а ионизирующие излучения (в первую очередь рентгеновское) - для целей промышленной дефектоскопии. Знаки «выход» в зданиях и самолетах благодаря содержанию радиоактивного трития светятся в темноте в случае внезапного отключения электричества. Многие приборы пожарной сигнализации в жилых домах и общественных зданиях содержат радиоактивный америций.

Радиоактивные излучения разного типа с разным энергетическим спектром характеризуются разной проникающей и ионизирующей способностью. Эти свойства определяют характер их воздействия на живое вещество биологических объектов.

Считают, что часть наследственных изменений и мутаций у животных и растений связана с радиационным фоном.

В случае ядерного взрыва на местности возникает очаг ядерного поражения - территория, где факторами массового поражения людей являются световое излучение, проникающая радиация и радиоактивное заражение местности.

В результате поражающего действия светового излучения могут возникнуть массовые ожоги и поражения глаз. Для защиты пригодны различного рода укрытия, а на открытой местности - специальная одежда и очки.

Проникающая радиация представляет собой гамма-лучи и поток нейтронов, исходящих из зоны ядерного взрыва. Они могут распространяться на тысячи метров, проникать в различные среды, вызывая ионизацию атомов и молекул. Проникая в ткани организма, гамма-лучи и нейтроны нарушают биологические процессы и функции органов и тканей, в результате чего развивается лучевая болезнь. Радиоактивное заражение местности создается за счет адсорбции радиоактивных атомов частицами грунта (так называемое радиоактивное облако, которое перемещается по направлению движения воздуха). Основная опасность для людей на зараженной местности - внешнее бета-гаммма-облучение и попадание продуктов ядерного взрыва внутрь организма и на кожные покровы.

Ядерные взрывы, выбросы радионуклидов предприятиями ядерной энергетики и широкое использование источников ионизирующих излучений в различных отраслях промышленности, сельском хозяйстве, медицине и научных исследованиях привели к глобальному повышению облучения населения Земли. К естественному облучению прибавились антропогенные источники внешнего и внутреннего облучения.

При ядерных взрывах в окружающую среду поступают радионуклиды деления, наведенной активности и неразделившаяся часть заряда (уран, плутоний). Наведенная активность наступает при захвате нейтронов ядрами атомов элементов, находящихся в конструкции изделия, воздухе, почве и воде. По характеру излучения все радионуклиды деления и наведенной активности относят к - или,-излучателям.

Выпадения подразделяются на местные и глобальные (тропосферные и стратосферные). Местные выпадения, которые могут включать свыше 50% образовавшихся радиоактивных веществ при наземных взрывах, представляют собой крупные аэрозольные частицы, выпадающие на расстоянии около 100 км от места взрыва. Глобальные выпадения обусловлены мелкодисперсными аэрозольными частицами.

Радионуклиды, выпавшие на поверхность земли, становятся источником длительного облучения.

Воздействие на человека радиоактивных выпадений включает внешнее -, -облучение за счёт радионуклидов, присутствующих в приземном воздухе и выпавших на поверхность земли, контактное в результате загрязнения кожных покровов и одежды и внутреннее от поступивших в организм радионуклидов с вдыхаемым воздухом и загрязнённой пищей и водой. Критическим радионуклидом в начальный период является радиоактивный йод, а в последующем 137Cs и 90Sr.

1. История открытия радиоактивных излучений

Радиоактивность была открыта в 1896 году французским физиком А. Беккерелем. Он занимался исследованием связи люминесценции и недавно открытых рентгеновских лучей.

Беккерелю пришла в голову мысль: не сопровождается ли всякая люминесценция рентгеновскими лучами? Для проверки своей догадки он взял несколько соединений, в том числе одну из солей урана, фосфоресцирующую жёлто-зелёным светом. Осветив её солнечным светом, он завернул соль в чёрную бумагу и положил в тёмном шкафу на фотопластинку, тоже завёрнутую в чёрную бумагу. Через некоторое время, проявив пластинку, Беккерель действительно увидел изображение куска соли. Но люминесцентное излучение не могло пройти через чёрную бумагу, и только рентгеновские лучи могли в этих условиях засветить пластинку. Беккерель повторил опыт несколько раз и с одинаковым успехом. В конце февраля 1896 г. на заседании Французской академии наук он сделал сообщение о рентгеновском излучении фосфоресцирующих веществ.

Через некоторое время в лаборатории Беккереля была случайно проявлена пластинка, на которой лежала урановая соль, не облучённая солнечным светом. Она, естественно, не фосфоресцировала, но отпечаток на пластинке получился. Тогда Беккерель стал испытывать разные соединения и минералы урана (в том числе не проявляющие фосфоресценции), а также металлический уран. Пластинка неизменно засвечивалась. Поместив между солью и пластинкой металлический крестик, Беккерель получил слабые контуры крестика на пластинке. Тогда стало ясно, что открыты новые лучи, проходящие сквозь непрозрачные предметы, но не являющиеся рентгеновскими.

Беккерель установил, что интенсивность излучения определяется только количеством урана в препарате и совершенно не зависит от того, в какие соединения он входит. Таким образом, это свойство было присуще не соединениям, а химическому элементу -- урану.

Своим открытием Беккерель делится с учёными, с которыми он сотрудничал. В 1898 г. Мария Кюри и Пьер Кюри обнаружили радиоактивность тория, позднее ими были открыты радиоактивные элементы полоний и радий.

Они выяснили, что свойством естественной радиоактивности обладают все соединения урана и в наибольшей степени сам уран. Беккерель же вернулся к интересующим его люминофорам. Правда, он сделал ещё одно крупное открытие, относящееся к радиоактивности. Однажды для публичной лекции Беккерелю понадобилось радиоактивное вещество, он взял его у супругов Кюри и положил пробирку в жилетный карман. Прочтя лекцию, он вернул радиоактивный препарат владельцам, а на следующий день обнаружил на теле под жилетным карманом покраснение кожи в форме пробирки. Беккерель рассказал об этом Пьеру Кюри, и тот поставил на себе опыт: в течение десяти часов носил привязанную к предплечью пробирку с радием. Через несколько дней у него тоже появилось покраснение, перешедшее затем в тяжелейшую язву, от которой он страдал в течение двух месяцев. Так впервые было открыто биологическое действие радиоактивности.

Но и после этого супруги Кюри мужественно делали своё дело. Достаточно сказать, что Мария Кюри умерла от лучевой болезни (дожив, тем не менее, до 66 лет).

В 1955 г. были обследованы записные книжки Марии Кюри. Они до сих пор излучают, благодаря радиоактивному загрязнению, внесённому при их заполнении. На одном из листков сохранился радиоактивный отпечаток пальца Пьера Кюри.

Понятие радиоактивности и типы излучений.

Радиоактивность - способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием различных видов радиоактивных излучений и элементарных частиц. Радиоактивность подразделяют на естественную (наблюдается у неустойчивых изотопов, существующих в природе) и искусственную (наблюдается у изотопов, полученных посредством ядерных реакций).

Радиоактивное излучение разделяют на три типа:

Излучение - отклоняется электрическим и магнитными полями, обладает высокой ионизирующей способностью и малой проникающей способностью; представляет собой поток ядер гелия; заряд -частицы равен +2е, а масса совпадает с массой ядра изотопа гелия 42Не.

Излучение - отклоняется электрическим и магнитным полями; его ионизирующая способность значительно меньше (приблизительно на два порядка), а проникающая способность гораздо больше, чем у -частиц; представляет собой поток быстрых электронов.

Излучение - не отклоняется электрическим и магнитными полями, обладает относительно слабой ионизирующей способностью и очень большой проникающей способностью; представляет собой коротковолновое электромагнитное излучение с чрезвычайно малой длиной волны < 10-10 м и вследствие этого - ярко выраженными корпускулярными свойствами, то есть является поток частиц - -квантов (фотонов).

Период полураспада Т1/2 - время, за которое исходное число радиоактивных ядер в среднем уменьшается вдвое.

Альфа излучение - поток положительно заряженных частиц, образованная 2 протонами и 2 нейтронами. Частица идентична ядру атома гелия-4 (4He2+). Образуется при альфа-распаде ядер. Впервые альфа-излучение открыл Э. Резерфорд. Изучая радиоактивные элементы, в частности изучая такие радиоактивные элементы как уран радий и актиний, Э. Резерфорд пришел к выводу что все радиоактивные элементы испускают альфа- и бета-лучи. И, что еще более важно, радиоактивность любого радиоактивного элемента через определенный конкретный период времени уменьшается. Источником альфа-излучения являются радиоактивные элементы. В отличие от других видов ионизирующего излучения альфа-излучение является наиболее безобидным. Оно опасно лишь при попадании в организм такого вещества (вдыхание, съедание, выпивание, втирание и т.д.), так как пробег альфа частицы, например с энергией 5 МэВ, в воздухе составляет 3,7 см, а в биологической ткани 0,05 мм. Альфа-излучение попавшего в организм радионуклида наносит поистине кошмарные разрушения, т.к. коэффициент качества альфа излучения с энергией меньше 10 МэВ равен 20мм. а потери энергии происходят в очень тонком слое биологической ткани. Оно практически сжигает его. При поглощении альфа-частиц живыми организмами могут возникнуть мутагенные (факторы, вызывающий мутацию), канцерогенные (вещества или физический агент (излучение), способные вызвать развитие злокачественных новообразований) и другие отрицательные эффекты. Проникающая способность А.-и. невелика т.к. задерживается листом бумаги.

Бета-частица (в-частица), заряженная частица, испускаемая в результате бета-распада. Поток бета-частиц называется бета-лучи или бета-излучение.

Отрицательно заряженные бета-частицы являются электронами (в--), положительно заряженные -- позитронами (в+).

Энергии бета-частиц распределены непрерывно от нуля до некоторой максимальной энергии, зависящей от распадающегося изотопа; эта максимальная энергия лежит в диапазоне от 2,5 кэВ (для рения-187) до десятков МэВ (для короткоживущих ядер, далёких от линии бета-стабильности).

Бета-лучи под действием электрического и магнитного полей отклоняются от прямолинейного направления. Скорость частиц в бета-лучах близка к скорости света. Бета-лучи способны ионизировать газы, вызывать химические реакции, люминесценцию, действовать на фотопластинки.

Значительные дозы внешнего бета-излучения могут вызвать лучевые ожоги кожи и привести к лучевой болезни. Ещё более опасно внутреннее облучение от бета-активных радионуклидов, попавших внутрь организма. Бета-излучение имеет значительно меньшую проникающую способность, чем гамма-излучение (однако на порядок большую, чем альфа-излучение). Слой любого вещества с поверхностной плотностью порядка 1 г/см2.

Например, несколько миллиметров алюминия или несколько метров воздуха практически полностью поглощает бета-частицы с энергией около 1 МэВ.

Гамма - излучение вид электромагнитного излучения с чрезвычайно маленькой длиной волны -- < 5Ч10-3 нм и вследствие этого ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. Гамма-квантами являются фотоны высокой энергии. Обычно считается, что энергии квантов гамма-излучения превышают 105 эВ, хотя резкая граница между гамма- и рентгеновским излучением не определена. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1-100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению, если при взаимодействиях электронов или при переходах в атомной электронной оболочке -- то к рентгеновскому излучению. Очевидно, физически кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.

Гамма-излучение испускается при переходах между возбуждёнными состояниями атомных ядер (энергии таких гамма-квантов лежат в диапазоне от ~1 кэВ до десятков МэВ). При ядерных реакциях (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т.д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях.

Гамма-лучи в отличие от б-лучей и в-лучей не отклоняются электрическими и магнитными полями и характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Гамма-кванты вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:

Фотоэффект (гамма-квант поглощается электроном атомной оболочки, передавая ему всю энергию и ионизируя атом).

Комптоновское рассеяние (гамма-квант рассеивается на электроне, передавая ему часть своей энергии).

Рождение электрон-позитронных пар (в поле ядра гамма-квант с энергией не ниже 2mec2=1,022 МэВ превращается в электрон и позитрон).

Фотоядерные процессы (при энергиях выше нескольких десятков МэВ гамма-квант способен выбивать нуклоны из ядра).

Гамма-кванты, как и любые другие фотоны, могут быть поляризованы.

Облучение гамма-квантами, в зависимости от дозы и продолжительности, может вызвать хроническую и острую лучевую болезнь. Стохастические эффекты облучения включают различные виды онкологических заболеваний. В то же время гамма-облучение подавляет рост раковых и других быстро делящихся клеток. Гамма-излучение является мутагенным и тератогенным фактором.

Защитой от гамма-излучения может служить слой вещества. Эффективность защиты (то есть вероятность поглощения гамма-кванта при прохождении через неё) увеличивается при увеличении толщины слоя, плотности вещества и содержания в нём тяжёлых ядер (свинца, вольфрама, обеднённого урана и пр.).

Единицей измерения радиоактивности служит беккерель (Бк, Bq). Один беккерель равен одному распаду в секунду. Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или его объема (Бк/л, Бк/куб.м). Часто используют внесистемную единицу - кюри (Ки, Ci). Один кюри соответствует числу распадов в секунду в 1 грамме радия. 1 Ки = 3,7.1010 Бк.

Соотношения между единицами измерения приведены ниже в таблице.

Широко известная внесистемная единица рентген (Р, R) служит для определения экспозиционной дозы. Один рентген соответствует дозе рентгеновского или гамма-излучения, при которой в 1 см3 воздуха образуется 2.109 пар ионов. 1 Р = 2, 58.10-4 Кл/кг.

Чтобы оценить действие излучения на вещество, измеряют поглощенную дозу, которая определяется как поглощенная энергия на единицу массы. Единица поглощенной дозы называется рад. Один рад равен 100 эрг/г. В системе СИ используют другую единицу - грей (Гр, Gy). 1 Гр = 100 рад = 1 Дж/кг.

Биологический эффект различных видов излучения неодинаков. Это связано с отличиями в их проникающей способности и характере передачи энергии органам и тканям живого организма. Поэтому для оценки биологических последствий используют биологический эквивалент рентгена - бэр. Доза в бэрах эквивалентна дозе в радах, умноженной на коэффициент качества излучения. Для рентгеновских, бета- и гамма-лучей коэффициент качества считается равным единице, то есть бэр соответствует раду. Для альфа-частиц коэффициент качества равен 20 (это означает, что альфа-частицы вызывают в 20 раз более сильное повреждение живой ткани, чем та же поглощенная доза бета- или гамма-лучей). Для нейтронов коэффициент составляет от 5 до 20 в зависимости от энергии. В системе СИ для эквивалентной дозы введена специальная единица, называемая зиверт (Зв, Sv). 1 Зв = 100 бэр. Эквивалентная доза в зивертах соответствует поглощенной дозе в греях, умноженной на коэффициент качества.

2. Воздействие радиационного излучения на организм человека

Различают два вида эффекта воздействия на организм ионизирующих излучений: соматический и генетический. При соматическом эффекте последствия проявляются непосредственно у облучаемого, при генетическом - у его потомства. Соматические эффекты могут быть ранними или отдалёнными. Ранние возникают в период от нескольких минут до 30-60 суток после облучения. К ним относят покраснение и шелушение кожи, помутнение хрусталика глаза, поражение кроветворной системы, лучевая болезнь, летальный исход. Отдалённые соматические эффекты проявляются через несколько месяцев или лет после облучения в виде стойких изменений кожи, злокачественных новообразований, снижения иммунитета, сокращения продолжительности жизни.

При изучении действия излучения на организм были выявлены следующие особенности:

ь Высокая эффективность поглощённой энергии, даже малые её количества могут вызвать глубокие биологические изменения в организме.

ь Наличие скрытого (инкубационного) периода проявления действия ионизирующих излучений.

ь Действие от малых доз может суммироваться или накапливаться.

ь Генетический эффект - воздействие на потомство.

Различные органы живого организма имеют свою чувствительность к облучению.

Не каждый организм (человек) в целом одинаково реагирует на облучение.

Облучение зависит от частоты воздействия. При одной и той же дозе облучения вредные последствия будут тем меньше, чем более дробно оно получено во времени.

Ионизирующее излучение может оказывать влияние на организм как при внешнем (особенно рентгеновское и гамма-излучение), так и при внутреннем (особенно альфа-частицы) облучении. Внутреннее облучение происходит при попадании внутрь организма через лёгкие, кожу и органы пищеварения источников ионизирующего излучения. Внутреннее облучение более опасно, чем внешнее, так как попавшие внутрь источники ионизирующего излучения подвергают непрерывному облучению ничем не защищённые внутренние органы.

Под действием ионизирующего излучения вода, являющаяся составной частью организма человека, расщепляется и образуются ионы с разными зарядами. Полученные свободные радикалы и окислители взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая её. Нарушается обмен веществ. Происходят изменения в составе крови - снижается уровень эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов. Поражение органов кроветворения разрушает иммунную систему человека и приводит к инфекционным осложнениям.

Местные поражения характеризуются лучевыми ожогами кожи и слизистых оболочек. При сильных ожогах образуются отёки, пузыри, возможно отмирание тканей (некрозы).

Смертельно поглощенные и предельно допустимые дозы облучения.

Смертельные поглощённые дозы для отдельных частей тела следующие:

ь голова - 20 Гр;

ь нижняя часть живота - 50 Гр;

ь грудная клетка -100 Гр;

ь конечности - 200 Гр.

При облучении дозами, в 100-1000 раз превышающую смертельную дозу, человек может погибнуть во время облучения ("смерть под лучом").

В зависимости от типа ионизирующего излучения могут быть разные меры защиты: уменьшение времени облучения, увеличение расстояния до источников ионизирующего излучения, ограждение источников ионизирующего излучения, герметизация источников ионизирующего излучения, оборудование и устройство защитных средств, организация дозиметрического контроля, меры гигиены и санитарии.

А - персонал, т.е. лица, постоянно или временно работающие с источниками ионизирующего излучения;

Б - ограниченная часть населения, т.е. лица, непосредственно не занятые на работе с источниками ионизирующих излучений, но по условиям проживания или размещения рабочих мест могущие подвергаться воздействию ионизирующих излучений;

В - всё население.

Предельно допустимая доза - это наибольшее значение индивидуальной эквивалентной дозы за год, которая при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья персонала неблагоприятных изменений, обнаруживаемых современными методами.

Табл. 2. Предельно допустимые дозы облучения

Природные источники дают суммарную годовую дозу примерно 200 мбэр (космос - до 30 мбэр, почва - до 38 мбэр, радиоактивные элементы в тканях человека - до 37 мбэр, газ радон - до 80 мбэр и другие источники).

Искусственные источники добавляют ежегодную эквивалентную дозу облучения примерно в 150-200 мбэр (медицинские приборы и исследования - 100-150 мбэр, просмотр телевизора -1-3 мбэр, ТЭЦ на угле - до 6 мбэр, последствия испытаний ядерного оружия - до 3 мбэр и другие источники).

Всемирной организацией здравоохранения (ВОЗ) предельно допустимая (безопасная) эквивалентная доза облучения для жителя планеты определена в 35 бэр, при условии её равномерного накопления в течение 70 лет жизни.

Табл. 3. Биологические нарушения при однократном (до 4-х суток) облучении всего тела человека

Доза облучения, (Гр)

Степень лучевой болезни

Начало проявления первичной реакции

Характер первичной реакции

Последствия облучения

До 0,250 - 1,0

Видимых нарушений нет. Возможны изменения в крови. Изменения в крови, трудоспособность нарушена

Через 2-3 ч

Несильная тошнота с рвотой. Проходит в день облучения

Как правило, 100% -ное выздоровление даже при отсутствии лечения

3. Защита от ионизирующих излучений

Противорадиационная защита населения включает: оповещение о радиационной опасности, использование коллективных и индивидуальных средств защиты, соблюдение режима поведения населения на зараженной радиоактивными веществами территории. Защиту продуктов питания и воды от радиоактивного заражения, использование медицинских средств индивидуальной защиты, определение уровней заражения территории, дозиметрический контроль за облучением населения и экспертизу заражения радиоактивными веществами продуктов питания и воды.

По сигналам оповещения Гражданской обороны «Радиационная опасность» население должно укрыться в защитных сооружениях. Как известно, они существенно (в несколько раз) ослабляют действие проникающей радиации.

Из-за опасности получить радиационное поражение нельзя приступать к оказанию первой медицинской помощи населению при наличии на местности высоких уровней радиации. В этих условиях большое значение имеет оказание само- и взаимопомощи самим пострадавшим населением, строгое соблюдение правил поведения на заражённой территории.

На территории, заражённой радиоактивными веществами, нельзя принимать пищу, пить воду из заражённых водоисточников, ложиться на землю. Порядок приготовления пищи и питания населения определяется органами Гражданской обороны с учётом уровней радиоактивного заражения местности.

Для защиты от воздуха, заражённого радиоактивными частицами можно применять противогазы и респираторы (для шахтёров). Также есть общие методы защиты такие как:

ь увеличение расстояния между оператором и источником;

ь сокращение продолжительности работы в поле излучения;

ь экранирование источника излучения;

ь дистанционное управление;

ь использование манипуляторов и роботов;

ь полная автоматизация технологического процесса;

ь использование средств индивидуальной защиты и предупреждение знаком радиационной опасности;

ь постоянный контроль над уровнем излучения и за дозами облучения персонала.

К средствам индивидуальной защиты можно отнести противорадиационный костюм с включением свинца. Лучшим поглотителем гамма-лучей является свинец. Медленные нейтроны хорошо поглощаются бором и кадмием. Быстрые нейтроны предварительно замедляются с помощью графита.

Скандинавская компания Handy-fashions.com занимается разработкой защиты от излучения мобильных телефонов, так, например, она представила жилет, кепку и шарф предназначенные для защиты от вредного изучения мобильных телефонов. Для их производства используется специальная антирадиационная ткань. Только карман на жилетке выполнен из обычной ткани для устойчивого приёма сигнала. Стоимость полного защитного комплекта от 300 долларов.

Защита от внутреннего облучения заключается в устранении непосредственного контакта работающих с радиоактивными частицами и предотвращение попадания их в воздух рабочей зоны.

Необходимо руководствоваться нормами радиационной безопасности, в которых приведены категории облучаемых лиц, дозовые пределы и мероприятия по защите, и санитарными правилами, которые регламентируют размещение помещений и установок, место работ, порядок получения, учета и хранения источников излучения, требования к вентиляции, пылегазоочистке, обезвреживанию радиоактивных отходов и др.

Также для защиты помещений с персоналом, в Пензенской государственной архитектурно-строительной академии ведутся разработки по созданию «высокоплотной мастики для защиты от радиации». В состав мастик входят: связующее - резорцино-формальдегидная смола ФР-12, отвердитель - параформальдегид и наполнитель - материал высокой плотности.

Защита от альфа-, бета -, гамма-лучей.

Основные принципы радиационной безопасности заключаются в непревышении установленного основного дозового предела, исключении всякого необоснованного облучения и снижении дозы излучения до возможно низкого уровня. С целью реализации этих принципов на практике обязательно контролируются дозы облучения, полученные персоналом при работе с источниками ионизирующих излучений, работа проводится в специально оборудованных помещениях, используется защита расстоянием и временем, применяются различные средства коллективной и индивидуальной защиты.

Для определения индивидуальных доз облучения персонала необходимо систематически проводить радиационный (дозиметрический) контроль, объем которого зависит от характера работы с радиоактивными веществами. Каждому оператору, имеющему контакт с источниками ионизирующих излучений, выдается индивидуальный дозиметр1 для контроля полученной дозы гамма-излучений. В помещениях, где проводится работа с радиоактивными веществами, необходимо обеспечить и общий контроль за интенсивностью различных видов излучений. Эти помещения должны быть изолированы от прочих помещений, оснащены системой приточно-вытяжной вентиляции с кратностью воздухообмена не менее пяти. Окраска стен, потолка и дверей в этих помещениях, а также устройство пола выполняются таким образом, чтобы исключить накопление радиоактивной пыли и избежать поглощения радиоактивных аэрозолей. Паров и жидкостей отделочными материалами (окраска стен, дверей и в некоторых случаях потолков должна производиться масляными красками, полы покрываются материалами, не впитывающими жидкости, - линолеумом, полихлорвиниловым пластикатом и др.). Все строительные конструкции в помещениях, где проводится работа с радиоактивными веществами, не должны иметь трещин и несплошностей; углы закругляют для того, чтобы не допустить скопления в них радиоактивной пыли и облегчить уборку. Не менее одного раза в месяц проводят генеральную уборку помещений с обязательным мытьем горячей мыльной водой стен, окон, дверей, мебели и оборудования. Текущая влажная уборка помещений проводится ежедневно.

Для уменьшения облучения персонала все работы с этими источниками проводят с использованием длинных захватов или держателей. Защита временем заключается в том, что работу с радиоактивными источниками проводят за такой период времени, чтобы доза облучения, полученная персоналом, не превышала предельно допустимого уровня.

Коллективные средства защиты от ионизирующих излучений регламентируются ГОСТом 12.4.120-83 «Средства коллективной защиты от ионизирующих излучений. Общие требования». В соответствии с этим нормативным документом основными средствами защиты являются стационарные и передвижные защитные экраны, контейнеры для транспортирования и хранения источников ионизирующих излучений, а также для сбора и транспортировки радиоактивных отходов, защитные сейфы и боксы и др.

Стационарные и передвижные защитные экраны предназначены для снижения уровня излучения на рабочем месте до допустимой величины. Если работу с источниками ионизирующих излучений проводят в специальном помещении - рабочей камере, то экранами служат ее стены, пол и потолок, изготовленные из защитных материалов. Такие экраны носят название стационарных. Для устройства передвижных экранов используют различные щиты, поглощающие или ослабляющие излучение.

Экраны изготавливают из различных материалов. Их толщина зависит от вида ионизирующего излучения, свойств защитного материала и необходимой кратности ослабления излучения k. Величина k показывает, во сколько раз необходимо понизить энергетические показатели излучения (мощность экспозиционной дозы, поглощенную дозу, плотность потока частиц и др.), чтобы получить допустимые значения перечисленных характеристик. Например, для случая поглощенной дозы k выражается следующим образом:

где D - мощность поглощенной дозы; D0 - допустимый уровень поглощенной дозы.

Для сооружения стационарных средств защиты стен, перекрытий, потолков и т.д. используют кирпич, бетон, баритобетон и баритовую штукатурку (в их состав входит сульфат бария - BaSO4). Эти материалы надежно защищают персонал от воздействия гамма- и рентгеновского излучения.

Для создания передвижных экранов используют различные материалы. Защита от альфа-излучения достигается применением экранов из обычного или органического стекла толщиной несколько миллиметров. Достаточной защитой от этого вида излучения является слой воздуха в несколько сантиметров. Для защиты от бета-излучения экраны изготавливают из алюминия или пластмассы (органическое стекло). От гамма- и рентгеновского излучения эффективно защищают свинец, сталь, вольфрамовые сплавы. Смотровые системы изготавливают из специальных прозрачных материалов, например, свинцового стекла. От нейтронного излучения защищают материалы, содержащие в составе водород (вода, парафин), а также бериллий, графит, соединения бора и т.д. Бетон также можно использовать для защиты от нейтронов.

Защитные сейфы применяются для хранения источников гамма-излучения. Они изготавливаются из свинца и стали.

Для работы с радиоактивными веществами, обладающими, альфа- и бета-активностью, используют защитные перчаточные боксы.

Защитные контейнеры и сборники для радиоактивных отходов изготавливаются из тех же материалов, что и экраны - органического стекла, стали, свинца и др.

При проведении работ с источниками ионизирующих излучений опасная зона должна быть ограничена предупреждающими надписями.

Опасная зона - это пространство, в котором возможно воздействие на работающего опасного и (или) вредного производственных факторов (в данном случае - ионизирующих излучений).

Принцип действия приборов, предназначенных для контроля за персоналом, который подвергается воздействию ионизирующих излучений, основан на различных эффектах, возникающих при взаимодействии этих излучений с веществом. Основные методы обнаружения и измерения радиоактивности - ионизация газа, сцинтилляционные и фотохимические методы. Наиболее часто используется ионизационный метод, основанный на измерении степени ионизации среды, через которую прошло излучение.

Сцинтилляционные методы регистрации излучений основаны на способности некоторых материалов, поглощая энергию ионизирующего излучения, превращать ее в световое излучение. Примером такого материала может служить сульфид цинка (ZnS). Сцинтилляционный счетчик представляет собой фотоэлектронную трубку с окошком, покрытым сульфидом цинка. При попадании внутрь этой трубки излучения возникает слабая вспышка света, которая приводит к возникновению в фотоэлектронной трубке импульсов электрического тока. Эти импульсы усиливаются и подсчитываются.

Существуют и другие методы определения ионизирующих излучений, например калориметрические, которые основаны на измерении количества тепла, выделяющегося при взаимодействии излучения с поглощающим веществом.

Приборы дозиметрического контроля делятся на две группы: дозиметры, используемые для количественного измерения мощности дозы, и радиометры или индикаторы излучения, применяемые для быстрого обнаружения радиоактивных загрязнений.

Из отечественных приборов применяются, например, дозиметры марок ДРГЗ-04 и ДКС-04. Первый используется для измерения гамма- и рентгеновского излучения в диапазоне энергий 0,03-3,0 МэВ. Шкала прибора проградуирована в микрорентген/секунду (мкР/с). Второй прибор используется для измерения гамма- и бета-излучения в энергетическом диапазоне 0,5- 3,0 МэВ, а также нейтронного излучения (жесткие и тепловые нейтроны). Шкала прибора проградуирована в миллирентгенах в час (мР/ч). Промышленость выпускает также бытовые дозиметры, предназначенные для населения, например, бытовой дозиметр «Мастер-1» (предназначен для измерения дозы гамма-излучения), дозиметр-радиометр бытовой АНРИ-01 («Сосна»).

ядерный радиационный смертельный ионизирующий

Заключение

Итак, из выше сказанного можно сделать следующий вывод:

Ионизирующее излучение -- в самом общем смысле -- различные виды микрочастиц и физических полей, способные ионизировать вещество. Наиболее значимы следующие типы ионизирующего излучения: коротковолновое электромагнитное излучение (рентгеновское и гамма-излучения), потоки заряжённых частиц: бета-частиц (электронов и позитронов), альфа-частиц (ядер атома гелия-4), протонов, других ионов, мюонов и др., а также нейтронов. В природе ионизирующее излучение обычно генерируется в результате спонтанного радиоактивного распада радионуклидов, ядерных реакций (синтез и индуцированное деление ядер, захват протонов, нейтронов, альфа-частиц и др.), а также при ускорении заряженных частиц в космосе (природа такого ускорения космических частиц до конца не ясна).

Искусственными источниками ионизирующего излучения являются искусственные радионуклиды (генерируют альфа-, бета- и гамма-излучения), ядерные реакторы (генерируют главным образом нейтронное и гамма-излучение), радионуклидные нейтронные источники, ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение), рентгеновские аппараты (генерируют тормозное рентгеновское излучение). Облучение очень опасно для организма человека, степень опасности зависит от дозы (в своем реферате я привела предельно допустимые нормы) и вида излучения - самым безопасным является альфа излучение, а более опасным - гамма.

Обеспечение радиационной безопасности требует комплекса многообразных защитных мероприятий, зависящих от конкретных условий работы с источниками ионизирующих излучений, а также от типа источника.

Защита временем основана на сокращении времени работы с источником, что позволяет уменьшить дозы облучения персонала. Этот принцип особенно часто применяется при непосредственной работе персонала с малыми радиоактивностями.

Защита расстоянием - достаточно простой и надежный способ защиты. Это связано со способностью излучения терять свою энергию во взаимодействиях с веществом: чем больше расстояние от источника, тем больше процессов взаимодействия излучения с атомами и молекулами, что в конечном итоге приводит к снижению дозы облучения персонала.

Защита экранами - наиболее эффективный способ защиты от излучений. В зависимости от вида ионизирующих излучений для изготовления экранов применяют различные материалы, а их толщина определяется мощностью и излучением.

Литература

1. «Вредные химические вещества. Радиоактивные вещества. Справочник.» Под общ. ред. Л.А. Ильина, В.А. Филова. Ленинград, «Химия». 1990.

2. Основы защиты населения и территорий в чрезвычайных ситуациях». Под ред. акад. В.В. Тарасова. Издательство Московского университета. 1998.

3. Безопасность жизнедеятельности/ Под ред. С.В. Белова.- 3-е изд., перераб.- М.: Высш. шк., 2001. - 485с.

Размещено на Allbest.ru

Подобные документы

    Источники ионизирующих излучений. Предельно допустимые дозы облучения. Классификация биологических защит. Представление спектрального состава гамма-излучения в ядерном реакторе. Основные стадии проектирования радиационной защиты от гамма-излучения.

    презентация , добавлен 17.05.2014

    Особенности радиоактивности и ионизирующих излучений. Характеристика источников и путей поступления радионуклидов в организм человека: естественная, искусственная радиация. Реакция организма на различные дозы радиационного облучения и средства защиты.

    реферат , добавлен 25.02.2010

    Радиоактивность и ионизирующие излучения. Источники и пути поступления радионуклидов в организм человека. Действие ионизирующих излучений на человека. Дозы радиационного облучения. Средства защиты от радиоактивных излучений, профилактические мероприятия.

    курсовая работа , добавлен 14.05.2012

    Радиация: дозы, единицы измерения. Ряд особенностей, характерных для биологического действия радиоактивных излучений. Виды эффектов радиации, большие и малые дозы. Мероприятия по защита от воздействия ионизирующих излучений и внешнего облучения.

    реферат , добавлен 23.05.2013

    Радиация и её разновидности. Ионизирующие излучения. Источники радиационной опасности. Устройство ионизирующих источников излучения, пути проникновения в организм человека. Меры ионизирующего воздействия, механизм действия. Последствия облучения.

    реферат , добавлен 25.10.2010

    Определение понятия радиации. Соматические и генетические эффекты воздействия радиации на человека. Предельно допустимые дозы общего облучения. Защита живых организмов от радиационных излучений временем, расстоянием и при помощи специальных экранов.

    презентация , добавлен 14.04.2014

    Источники внешнего облучения. Воздействие ионизирующих излучений. Генетические последствия радиации. Методы и средства защиты от ионизирующих излучений. Особенности внутреннего облучения населения. Формулы эквивалентной и поглощенной доз излучения.

    презентация , добавлен 18.02.2015

    Особенности воздействия радиации на живой организм. Внешнее и внутреннее облучение человека. Воздействие ионизирующего излучения на отдельные органы и организм в целом. Классификация эффектов радиации. Влияние ИИ на иммунобиологическую реактивность.

    презентация , добавлен 14.06.2016

    Воздействие ионизирующих излучений на неживое и живое вещество, необходимость метрологического контроля радиации. Экспозиционная и поглощенная дозы, единицы размерности дозиметрических величин. Физико-технические основы контроля ионизирующих излучений.

    контрольная работа , добавлен 14.12.2012

    Основные характеристики ионизирующих излучений. Принципы и нормы радиационной безопасности. Защита от действия ионизирующих излучений. Основные значения дозовых пределов внешнего и внутреннего облучений. Отечественные приборы дозиметрического контроля.

  • 12. Работоспособность человека и ее динамика
  • 13. Надежность работы человека-оператора. Критерии оценки
  • 14.Анализаторы и органы чувств человека.Строение анализатора.Виды анализаторов.
  • 15. Характеристика анализаторов человека.
  • 16.Строение и характеристики зрительного анализатора.
  • 17.Строение и характеристики слухового анализатора
  • 18.Строение и характеристики тактильного, обонятельного и вкусового анализатора.
  • 19. Основные психофизические законы восприятия
  • 20.Энергетические затраты человека при различных видах деятельности. Методы оценки тяжести труда.
  • 21. Параметры микроклимата производственных помещений.
  • 22. Нормирование параметров микроклимата.
  • 23. Инфракрасное излучение. Воздействие на организм человека. Нормирование. Защита
  • 24. Вентиляция производственных помещений.
  • 25.Кондиционирование воздуха
  • 26. Потребный воздухообмен в производственных помещениях. Методы расчета.
  • 27. Вредные вещества, их классификации. Виды комбинированного действия вредных веществ.
  • 28. Нормирование содержания вредных веществ в воздухе.
  • 29. Производственное освещение. Основные характеристики. Требования к системе освещения.
  • 31. Методы расчета искусственного освещения. Контроль производственного освещения.
  • 32.Понятие шума. Характеристика шума как физического явления.
  • 33. Громкость звука. Кривые равной громкости.
  • 34. Воздействие шума на организм человека
  • 35.Классификации шума
  • 2 Классификация по характеру спектра и временным характеристикам
  • 36.Гигиеническое нормирование шума
  • 37. Методы и средства защиты от шума
  • 40.Вибрация.Классификация вибрации по способу создания, по способу передачи человеку, по характеру спектра.
  • 41.Вибрация. Классификация вибрации по месту возникновения, по частотному составу, по временным хар-м
  • 3) По временным характеристикам:
  • 42. Характеристики вибрации. Действие вибрации на организм человека
  • 43.Методы нормир-я вибрации и нормируемые параметры.
  • 44.Методы и средства защиты от вибрации
  • 46. Зоны эл.Магнитного излучения. Возд-ие эмп на чел-ка.
  • 49. Методы и средства зашиты от неионизирующих электромагнитных излучений.
  • 50 Особенности воздействия лазерного излучения на организм человека. Нормирование. Зашита.
  • 51. Ионизирующие излучения. Виды ионизирующих излучений, основные характеристики.
  • 52. Ионизирующие излучения. Дозы ионизирующих излучений и единицы их измерения.
  • 55. Виды воздействия эл. Тока на человека. Факторы, влияющие на исход поражения человека эл. Током.
  • 56. Основные схемы линий электропередач. Схемы прикосновения человека к линиям эл/передач.
  • 57. Пороговые значения постоянного и переменного эл. Тока. Виды эл/травм.
  • 58. Напряжение прикосновения. Напряжение шага. 1 помощь пострадавшим от воздействия эл. Тока.
  • 59. Защитное заземление, виды защитного заземления.
  • 60. Зануление, защитное отключение и др. Средства защиты в эл/установках.
  • 62. Пожаробезопасность. Опасные факторы пожара.
  • 63.Виды горения.Виды процесса возникновения.
  • 64.Характеристики пожароопасности веществ
  • 65. Классификация веществ и материалов по пожарной опасности. Классификация производств и зон по пожароопасности
  • 66. Классификация электрооборудования по пожаровзрывоопасности и пожарной опасности.
  • 67. Пожарная профилактика в производственных зданиях
  • 68. Методы и средства тушения пожаров
  • 69.Нпа по охране труда
  • 70. Обязанности работодателя в области охраны труда на предприятии
  • 72.Расследование нс на производстве
  • 73.Управление охраной окружающей среды(оос)
  • 74.Эколог-е нормирование.Виды экологических нормативов
  • 75 Экологическое лицензирование
  • 76. Инженерная защита окружающей среды. Основные процессы, лежащие в основе средозащитных технологий
  • 77. Методы и основные аппараты для очистки от пылевоздушных примесей
  • 78.Методы и основные аппараты для очистки газовоздушных примесей
  • 1. Абсорбсер
  • 2.Адсорбер
  • 3.Хемосорбция
  • 4.Аппарат термической нейтрализации
  • 79. Методы и основные аппараты очистки сточных вод.
  • 80. Отходы и их виды. Методы переработки и утилизации отходов.
  • 81. Чрезвычайные ситуации: основные определения и классификация
  • 82. Чс природного, техногенного и экологического характера
  • 83. Причины возникновения и стадии развития чс
  • 84. Поражающие факторы техногенных катастроф: понятие, классификация.
  • 85. Поражающие факторы физического действия и их параметры. «Эффект домино»
  • 86.Прогнозирование химической обстановки при авариях на хоо
  • 87. Цели, задачи и структура рсчс
  • 88. Устойчивость функционирования промышленных объектов и систем
  • 89. Мероприятия по ликвидации последствий чс
  • 90. Оценка риска технических систем. Концепция «удельной смертности»
  • 51. Ионизирующие излучения. Виды ионизирующих излучений, основные характеристики.

    ИИ делятся на 2 вида:

      Корпускулярное излучение

    - 𝛼-излучение представляет собой поток ядер гелия, испускаемых веществом при радиоактивном распаде или при ядерных реакциях;

    - 𝛽-излучение – поток электронов или позитронов, возникающих при радиоактивном распаде;

    Нейтронное излучение (При упругих взаимодействиях происходит обычная ионизация вещества. При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и -квантов).

    2. Электромагнитное излучение

    - 𝛾-излучение – это электромагнитное (фотонное) излучение, испускаемое при ядерных превращениях или взаимодействии частиц;

    Рентгеновское излучение – возникает в среде, окружающей источ-ник -излучения, в рентгеновских трубках.

    Характеристики ИИ: энергия (МэВ); скорость (км/с); пробег (в воздухе, в живой ткани); ионизирующая способность (пар ионов на 1 см пути в воздухе).

    Самая низкая ионизирующая способность у α-излучения.

    Заряженные частицы приводят к прямой, сильной ионизации.

    Активность (А) радиоактивного в-ва – число спонтанных ядерных превращений (dN) в этом веществе за малый промежуток времени (dt):

    1 Бк (беккерель) равен одному ядерному превращению в секунду.

    52. Ионизирующие излучения. Дозы ионизирующих излучений и единицы их измерения.

    Ионизирующее излучение (ИИ) – это излучение, взаимодействие которой со средой приводит к образованию зарядов противоположных знаков. Возникает ионизирующее излучение при радиоактивном распаде, ядерных превращениях, а также при взаимодействии заряженных частиц, нейтронов, фотонного (электромагнитного) излучения с веществом.

    Доза излучения – величина, используемая для оценки воздействия ионизирующего излучения.

    Экспозиционная доза (характеризует источник излучения по эффекту ионизации):

    Экспозиционная доза на рабочем месте при работе с радиоактивными веществами:

    где А–активность источника [мКи], К–гамма-постоянная изотопа [Рсм2/(чмКи)], t – время облучения, r – расстояние от источника до рабочего места [см ].

    Мощность дозы (интенсивность облучения) – приращение соответствующей дозы под воздействием данного излучения за ед. времени.

    Мощность экспозиционной дозы [рч -1 ].

    Поглощённая доза показывает, какое кол-во энергии ИИ поглощено ед. массы облучаемого в-ва:

    Д погл. = Д эксп. К 1

    где К 1 – коэффициент, учитывающий вид облучаемого вещества

    Поглащ. доза, Грей, [Дж/кг]=1Грей

    Эквивалентная доза хар-ет хроническое облучение излучением произвольного состава

    Н = Д Q [Зв] 1 Зв = 100 бэр.

    Q – безразмерный взвешивающий коэффициент для данного вида излучения. Для рентгеновского и -излучения Q=1, для альфа-, бета-частиц и нейтронов Q=20.

    Эффективная эквивалентная доза хар-ет чувствительность разл. органов и тканей излучению.

    Облучение неживых объектов – Поглащ. доза

    Облучение живых объектов – Эквив. доза

    53. Действие ионизирующих излучений (ИИ) на организм. Внешнее и внутреннее облучение.

    Биологический эффект ИИ основан на ионизации живой ткани, что приводит к разрыву молекулярных связей и изменению химической структуры различных соединений, что приводит к изменению ДНК клеток и их последующей гибели.

    Нарушение процессов жизнедеятельности организма выражается в таких расстройствах как

    Торможение функций кроветворных органов,

    Нарушение нормальной свертываемости крови и повышение хрупкос- ти кровеносных сосудов,

    Расстройство деятельности желудочно-кишечного тракта,

    Снижение сопротивляемости инфекциям,

    Истощение организма.

    Внешнее облучение происходит тогда, когда источник радиации нах-ся вне организма человека и отсутствуют пути их попадания внутрь.

    Внутреннее облучение происх. тогда, когда источник ИИ нах-ся внутри человека; при этом внутр. облучение также опасно близостью источника ИИ к органам и тканям.

    Пороговые эффекты (Н > 0,1 Зв/год) зависят от дозы ИИ, возникают при дозах облучения в течении всей жизни

    Лучевая болезнь – это заболевание, которое хар-ся симптомами, возникающими при воздействии ИИ, такими, как снижение кроветворной способности, расстройство желудочно-кишечного тракта, снижение иммунитета.

    Степень лучевой болезни зависит от дозы излучения. Самой тяжелой явл-ся 4-ая степень, которая возникает при воздействии ИИ дозой более 10 Грей. Хронические лучевые поражения, как правило, вызываются внутренним облучением.

    Беспороговые (стахастические) эффекты проявляются при дозах Н<0,1 Зв/год, вероятность возникновения которых не зависит от дозы излучения.

    К стахастическим эф-там относят:

    Изменения соматические

    Изменения иммунные

    Изменения генетические

    Принцип нормирования – т.е. непревышение допустимых пределов индивид. Доз облучения от всех ист-ков ИИ.

    Принцип обоснования – т.е. запрещение всех видов деятельности по исп-ю ист-ков ИИ, при которых полученная для человека и общества польза не превышает риск возможного вреда, причинённого дополнительно к естественному радиац. факту.

    Принцип оптимизации – поддержание на возможно низком и достижимом уровне с учетом экономич. и соц. факторов индивид. доз облуч-я и числа облучаемых лиц при использовании источника ИИ.

    СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности».

    В соответствии с данным документом выделяют 3 гр. лиц:

    гр.А – это лица, непоср. работающие с техногенными источниками ИИ

    гр – это лица, усл-ия работы кот нах-ся в непоср. бризости от ист-ка ИИ, но деят. данных лиц непоср. с ист-ком не связано.

    гр – это всё остальное население, вкл. лиц гр. А и Б вне их производственной деятельности.

    Основной дозовый предел уст. по эффективной дозе:

    Для лиц гр.А: 20мЗв в год в ср. за последоват. 5 лет, но не более 50мЗв в год.

    Для лиц гр.Б: 1мЗв в год в ср. за последоват. 5 лет, но не более 5мЗв в год.

    Для лиц гр.В: не должны превышать ¼ значений для персонала гр.А.

    На случай ЧС, вызванной радиац.аварией сущ-ет т.н. пиковое повышенное облучение, кот. разрешается только в тех случаях, когда нет возм-ти принять меры исключающие вред организму.

    Применение таких доз м.б. оправдано только спасением жизни людей и предотвращением аварий, доп-ся только для мужчин старше 30 лет при добровольном письменном соглашении.

    М/ды защиты от ИИ:

    Защита кол-вом

    Защита временем

    Защита расст-ем

    Зонирование

    Дистанционное управление

    Экранирование

    Для защиты от γ -излучения: металлич. экраны, выполненные с большим атомным весом (W,Fe), а также из бетона, чугуна.

    Для защиты от β-излучения: исп-ют материалы с малой атомной массой (алюминий, плексиглаз).

    Для защиты от α-излучений: исп-ют металлы, содержащие Н2 (вода, парафин, и т.д.)

    Толщина экрана К=Ро/Рдоп, Ро – мощн. дозы, измеренная на рад. месте; Рдоп – предельно допустимая доза.

    Зонирование – деление территории на 3 зоны: 1) укрытие; 2) объекты и помещения, в которых могут нах-ся люди; 3) зона пост. пребывания людей.

    Дозиметрический контроль основывается на исп-ии след. методов: 1.Ионизационный 2.Фонографический 3.Химический 4.Калориметрический 5.Сцинтиляционный.

    Основные приборы , исп-ые для дозиметрич. контроля:

      Рентгенометр (для измер-я мощн. эксп. дозы)

      Радиометр (для измерения плотности потоков ИИ)

      Индивид. дозиметры (для измер-я экспозиц. или поглощённой дозы).

    Атомная энергия достаточно активно используется с мирными целями, например, в работе рентгеновского аппарата, ускорительной установки, что позволило распространять ионизирующие излучения в народном хозяйстве. Учитывая то, что человек ежедневно подвергается его воздействию, необходимо узнать, какими могу быт последствия опасного контакта и как обезопасить себя.

    Основная характеристика

    Ионизирующее излучение – это разновидность энергии лучистой, попадающей в конкретную среду, вызывая процесс ионизации в организме. Подобная характеристика ионизирующих излучений подходит для рентгеновских лучей, радиоактивных и высоких энергий, а также многое другое.

    Ионизирующее излучение оказывает непосредственное влияние на организм человека. Несмотря на то что ионизирующее излучение может применяться в медицине, оно чрезвычайно опасно, о чем свидетельствует его характеристика и свойства.

    Известными разновидностями являются облучения радиоактивные, которые появляются по причине произвольного расщепления атомного ядра, что вызывает трансформацию химических, физических свойств. Вещества, которые могут распадаться, считаются радиоактивными.

    Они бывают искусственными (семьсот элементов), естественными (пятьдесят элементов) – торий, уран, радий. Следует отметить, что у них имеются канцерогенные свойства, выделяются токсины в результате воздействия на человека могут стать причиной рака, лучевой болезни.

    Необходимо отметить следующие виды ионизирующих излучений, которые оказывают воздействие на организм человека:

    Альфа

    Считаются положительно заряженными ионами гелия, которые появляются в случае распада ядер тяжелых элементов. Защита от ионизирующих излучений осуществляется с помощью бумажного листка, ткани.

    Бета

    – поток отрицательно заряженных электронов, которые появляются в случае распада радиоактивных элементов: искусственных, естественных. Поражающий фактор намного выше, чем у предыдущего вида. В качестве защиты понадобится толстый экран, более прочный. К таким излучениям относятся позитроны.

    Гамма

    – жесткое электромагнитное колебание, появляющееся впоследствии распада ядер радиоактивных веществ. Наблюдается высокий проникающий фактор, является самым опасным излучением из трех перечисленных для организма человека. Чтобы экранировать лучи, нужно воспользоваться специальными устройствами. Для этого понадобятся хорошие и прочные материалы: вода, свинец и бетон.

    Рентгеновское

    Ионизирующее излучение формируется в процессе работы с трубкой, сложными установками. Характеристика напоминает гамма лучи. Отличие заключается в происхождении, длине волны. Присутствует проникающий фактор.

    Нейтронное

    Излучение нейтронное – это поток незаряженных нейтронов, которые входя в состав ядер, кроме водорода. В результате облучения, вещества получают порцию радиоактивности. Имеется самый большой проникающий фактор. Все эти виды ионизирующих излучений очень опасны.

    Главные источники излучения

    Источники ионизирующего излучения бывают искусственными, естественными. В основном организм человека получает радиацию от естественных источников, к ним относятся:

    • земная радиация;
    • облучение внутреннее.

    Что касается источников земной радиации, многие из них канцерогенные. К ним относят:

    • уран;
    • калий;
    • торий;
    • полоний;
    • свинец;
    • рубидий;
    • радон.

    Опасность состоит в том, что они канцерогенные. Радон – газ, у которого отсутствует запах, цвет, вкус. Он тяжелее воздуха в семь с половиной раз. Продукты его распада намного опаснее, чем газ, поэтому воздействие на организм человека крайне трагично.

    К искусственным источникам относятся:

    • энергетика ядерная;
    • фабрики обогатительные;
    • рудники урановые;
    • могильники с отходами радиоактивными;
    • рентгеновские аппараты;
    • взрыв ядерный;
    • научные лаборатории;
    • радионуклиды, которые активно используют в современной медицине;
    • осветительные устройства;
    • компьютеры и телефоны;
    • бытовая техника.

    При наличии указанных источников поблизости, существует фактор поглощенной дозы ионизирующего излучения, единица которого зависит от продолжительности воздействия на организм человека.

    Эксплуатация источников ионизирующего излучения происходит ежедневно, например: когда вы работаете за компьютером, смотрите телепередачу или говорите по мобильному телефону, смартфону. Все перечисленные источники в какой-то мере канцерогенные, они способны вызвать тяжелые и смертельные заболевания.

    Размещение источников ионизирующего излучения включает в себя перечень важных, ответственных работ, связанных с разработкой проекта по расположению облучающих установок. Во всех источниках излучения содержится определенная единица радиации, каждая из которых оказывает определенное воздействие на организм человека. Сюда можно отнести манипуляции, проводимые для монтажа, введения данных установок в эксплуатацию.

    Следует указать, что обязательно проводится утилизация источников ионизирующего излучения.

    Это процесс, который помогает вывести из эксплуатации генерирующие источники. Данная процедура состоит из технических, административных мер, которые направлены на обеспечение безопасности персонала, населения, а также присутствует фактор защиты окружающей среды. Канцерогенные источники и оборудование являются огромной опасностью для организма человека, поэтому их нужно утилизировать.

    Особенности регистрации излучений

    Характеристика ионизирующих излучений показывает, что они невидимые, у них нет запаха и цвета, поэтому их сложно заметить.

    Для этого существуют методы регистрации ионизирующих излучений. Что касается способов обнаружения, измерения, то все осуществляется косвенно, за основу берется какое-либо свойство.

    Используют такие методы обнаружения ионизирующих излучений:

    • Физический: ионизационный, пропорциональный счетчик, газоразрядный счетчик Гейгера-Мюллера, камера ионизационная, счетчик полупроводниковый.
    • Калориметрический метод обнаружения: биологический, клинический, фотографический, гематологический, цитогенетический.
    • Люминесцентный: счетчики флуоресцентный и сцинтилляционный.
    • Биофизический способ: радиометрия, расчетный.

    Дозиметрия ионизирующих излучений осуществляется с помощью приборов, они способны определить дозу излучения. Прибор включает в себя три основные части – счетчик импульса, датчик, источник питания. Дозиметрия излучений возможна благодаря дозиметру, радиометру.

    Влияния на человека

    Действие ионизирующего излучения на организм человека особенно опасно. Возможны такие последствия :

    • имеется фактор очень глубокого биологического изменения;
    • присутствует накопительный эффект единицы поглощенной радиации;
    • эффект проявляется через время, так как отмечается скрытый период;
    • у всех внутренних органов, систем разная чувствительность к единице поглощенной радиации;
    • радиация влияет на все потомство;
    • эффект зависит от единицы поглощенной радиации, дозы облучения, продолжительности.

    Несмотря на использование радиационных приборов в медицине, их действие может быть пагубным. Биологическое действие ионизирующих излучений в процессе равномерного облучения тела, в расчете 100% дозы, происходит следующее:

    • костный мозг – единица поглощенной радиации 12%;
    • легкие – не менее 12%;
    • кости – 3%;
    • семенники, яичники – поглощенной дозы ионизирующего излучения около 25%;
    • железа щитовидная – единица поглощенной дозы около 3%;
    • молочные железы – приблизительно 15%;
    • остальные ткани – единица поглощенной дозы облучения составляет 30%.

    В результате могут возникать различные заболевания вплоть до онкологии, паралича и лучевой болезни. Чрезвычайно опасно для детей и беременных, так как происходит аномальное развитие органов и тканей. Токсины, радиация – источники опасных заболеваний.