Логарифми з різними підставами та однаковими показниками. Логарифм правила дії з логарифмами

Логарифмом числа N на підставі а називається показник ступеня х , в яку потрібно звести а , щоб отримати число N

За умови, що
,
,

З визначення логарифму випливає, що
, тобто.
- ця рівність є основною логарифмічною тотожністю.

Логарифми на підставі 10 називаються десятковими логарифмами. Замість
пишуть
.

Логарифми на підставі e називаються натуральними та позначаються
.

Основні властивості логарифмів.

    Логарифм одиниці за будь-якої підстави дорівнює нулю

    Логарифм твору дорівнює сумілогарифмів співмножників.

3) Логарифм приватного дорівнює різниці логарифмів


Множник
називається модулем переходу від логарифмів на підставі a до логарифмів на підставі b .

За допомогою властивостей 2-5 часто вдається звести логарифм складного виразу результату простих арифметичних дій над логарифмами.

Наприклад,

Такі перетворення логарифму називаються логарифмуванням. Перетворення зворотні логарифмування називаються потенціюванням.

Розділ 2. Елементи вищої математики.

1. Межі

Межею функції
є кінцеве число А, якщо при прагненні xx 0 для кожного наперед заданого
, знайдеться таке число
, що як тільки
, то
.

Функція, що має межу, відрізняється від нього на нескінченно малу величину:
, де -б.м.в., тобто.
.

приклад. Розглянемо функцію
.

При прагненні
, функція y прагне до нуля:

1.1. Основні теореми про межі.

    Межа постійної величини дорівнює цій постійній величині

.

    Межа суми (різниці) кінцевого числа функцій дорівнює сумі (різниці) меж цих функцій.

    Межа добутку кінцевого числа функцій дорівнює добутку меж цих функцій.

    Межа частки двох функцій дорівнює приватній межі цих функцій, якщо межа знаменника не дорівнює нулю.

Чудові межі

,
, де

1.2. Приклади обчислення меж

Однак не всі межі обчислюються так просто. Найчастіше обчислення межі зводиться до розкриття невизначеності типу: або .

.

2. Похідна функції

Нехай ми маємо функцію
, безперервну на відрізку
.

Аргумент отримав деякий приріст
. Тоді і функція отримає збільшення
.

Значення аргументу відповідає значення функції
.

Значення аргументу
відповідає значення функції.

Отже, .

Знайдемо межу цього відношення при
. Якщо ця межа існує, то вона називається похідною цієї функції.

Визначення 3Виробної даної функції
за аргументом називається межа відношення збільшення функції до збільшення аргументу, коли збільшення аргументу довільним чином прагне до нуля.

Похідна функції
може бути позначена таким чином:

; ; ; .

Визначення 4Операція знаходження похідної від функції називається диференціюванням.

2.1. Механічний сенс похідної.

Розглянемо прямолінійний рух деякого твердого тіла чи матеріальної точки.

Нехай у певний момент часу точка, що рухається
знаходилась на відстані від початкового становища
.

Через деякий проміжок часу
вона перемістилася на відстань
. Ставлення =- Середня швидкістьматеріальної точки
. Знайдемо межу цього відношення, враховуючи що
.

Отже визначення миттєвої швидкості руху матеріальної точки зводиться до знаходження похідної від шляху за часом.

2.2. Геометричне значення похідної

Нехай ми маємо графічно задану деяку функцію
.

Мал. 1. Геометричний зміст похідної

Якщо
, то крапка
, буде переміщатися кривою, наближаючись до точки
.

Отже
, тобто. значення похідної за даного значення аргументу чисельно дорівнює тангенсу кута утвореного дотичної в даній точці з позитивним напрямом осі
.

2.3. Таблиця основних формул диференціювання.

Ступінна функція

Показова функція

Логарифмічна функція

Тригонометрична функція

Зворотна тригонометрична функція

2.4. Правила диференціювання.

Похідна від

Похідна суми (різниці) функцій


Похідна робота двох функцій


Похідна приватного двох функцій


2.5. Похідна від складної функції.

Нехай дана функція
така, що її можна подати у вигляді

і
, де змінна є проміжним аргументом, тоді

Похідна складної функції дорівнює добутку похідної цієї функції за проміжним аргументом на похідну проміжного аргументу по x.

Приклад1.

Приклад2.

3. Диференціал функції.

Нехай є
, що диференціюється на деякому відрізку
і нехай у цієї функції є похідна

,

тоді можна записати

(1),

де - нескінченно мала величина,

так як при

Помножуючи всі члени рівності (1) на
маємо:

Де
- Б.М.В. вищого ладу.

Величина
називається диференціалом функції
і позначається

.

3.1. Геометричне значення диференціалу.

Нехай дана функція
.

Рис.2. Геометричний зміст диференціала.

.

Очевидно, що диференціал функції
дорівнює приросту ординати дотичної в цій точці.

3.2. Похідні та диференціали різних порядків.

Якщо є
тоді
називається першою похідною.

Похідна від першої похідної називається похідною другого порядку та записується
.

Похідний n-го порядку від функції
називається похідна (n-1)-го порядку та записується:

.

Диференціал від диференціалу функції називається другим диференціалом чи диференціалом другого порядку.

.

.

3.3 Розв'язання біологічних завдань із застосуванням диференціювання.

Задача1. Дослідження показали, що зростання колонії мікроорганізмів підпорядковується закону
, де N – чисельність мікроорганізмів (у тис.), t -Час (Дні).

б) Чи буде в цей період чисельність колонії збільшуватися чи зменшуватись?

Відповідь. Чисельність колонії збільшуватиметься.

Задача 2. Вода в озері періодично тестується контролю вмісту хвороботворних бактерій. Через t днів після тестування концентрація бактерій визначається співвідношенням

.

Коли в озері настане мінімальна концентрація бактерій і чи можна буде в ньому купатися?

РішенняФункція досягає max або min, коли її похідна дорівнює нулю.

,

Визначимо max чи min буде через 6 днів. Для цього візьмемо другу похідну.


Відповідь: Через 6 днів буде мінімальна концентрація бактерій.

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими підставами: log a xта log a y. Тоді їх можна складати і віднімати, причому:

  1. log a x+ log a y= log a (x · y);
  2. log a x− log a y= log a (x : y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Log 6 4 + Log 6 9.

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log 6 4 + log 6 9 = log 6 (4 · 9) = log 6 36 = 2.

Завдання. Знайдіть значення виразу: log 2 48 − log 2 3.

Підстави однакові, використовуємо формулу різниці:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Завдання. Знайдіть значення виразу: log 3 135 − log 3 5.

Знову підстави однакові, тому маємо:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті побудовано багато контрольні роботи. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Тепер трохи ускладнимо завдання. Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x> 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму. Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log 7 49 6 .

Позбавимося ступеня в аргументі за першою формулою:
log 7 49 6 = 6 · log 7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

[Підпис до малюнка]

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 2 4 ; 49 = 7 2 . Маємо:

[Підпис до малюнка]

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником. Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log 2 7. Оскільки log 2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай дано логарифм log a x. Тоді для будь-якого числа cтакого, що c> 0 та c≠ 1, вірна рівність:

[Підпис до малюнка]

Зокрема, якщо покласти c = x, Отримаємо:

[Підпис до малюнка]

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічаються у звичайних числових виразів. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log 5 16 · log 2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

А тепер «перевернемо» другий логарифм:

[Підпис до малюнка]

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log 9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

[Підпис до малюнка]

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

[Підпис до малюнка]

Основне логарифмічне тотожність

Часто у процесі рішення потрібно представити число як логарифм на задану основу. У цьому випадку нам допоможуть формули:

У першому випадку число nстає показником ступеня, що стоїть у аргументі. Число nможе бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона так і називається: основна логарифмічна тотожність.

Справді, що буде, якщо число bзвести в такий ступінь, що число bу цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

[Підпис до малюнка]

Зауважимо, що log 25 64 = log 5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

[Підпис до малюнка]

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ:)

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. log a a= 1 – це логарифмічна одиниця. Запам'ятайте раз і назавжди: логарифм з будь-якої основи aвід цього підстави дорівнює одиниці.
  2. log a 1 = 0 – це логарифмічний нуль. Заснування aможе бути будь-яким, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a 0 = 1 - це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Завантажте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

  1. Перевірте, чи під знаком логарифму не стоять негативні числа чи одиниця. Цей методзастосуємо до виразів виду log b ⁡ (x) log b ⁡ (a) (\displaystyle (\frac (\log _(b)(x))(\log _(b)(a)))). Однак він не підходить для деяких особливих випадків:

    • Логарифм негативного числа не визначено за будь-якої підстави (наприклад, log ⁡ (− 3) (\displaystyle \log(-3))або log 4 ⁡ (− 5) (\displaystyle \log _(4)(-5))). У цьому випадку напишіть "ні рішення".
    • Логарифм нуля з будь-якої основи також не визначено. Якщо вам попався ln ⁡ (0) (\displaystyle \ln(0)), запишіть "ні рішення".
    • Логарифм одиниці з будь-якої основи ( log ⁡ (1) (\displaystyle \log(1))) завжди дорівнює нулю, оскільки x 0 = 1 (\displaystyle x^(0)=1)для всіх значень x. Запишіть замість такого логарифму 1 і не використовуйте наведений нижче метод.
    • Якщо логарифми мають різні підстави, наприклад l o g 3 (x) l o g 4 (a) (\displaystyle (\frac (log_(3)(x))(log_(4)(a)))), і зводяться до цілим числам, значення висловлювання не можна знайти вручну.
  2. Перетворіть вираз на один логарифм.Якщо вираз не відноситься до наведених вище особливих випадків, його можна подати у вигляді одного логарифму. Використовуйте для цього таку формулу: log b ⁡ (x) log b ⁡ (a) = log a ⁡ (x) (\displaystyle (\frac (\log _(b)(x))(\log _(b)(a)))=\ log _(a)(x)).

    • Приклад 1: розглянемо вираз log ⁡ 16 log ⁡ 2 (\displaystyle (\frac (\log (16))(\log (2)))).
      Для початку подаємо вираз у вигляді одного логарифму за допомогою наведеної вище формули: log ⁡ 16 log ⁡ 2 = log 2 ⁡ (16) (\displaystyle (\frac (\log (16))(\log (2)))=\log _(2)(16)).
    • Ця формула " заміни основи " логарифму виводиться з основних властивостей логарифмів.
  3. При можливості обчисліть значення виразу вручну.Щоб знайти log a ⁡ (x) (\displaystyle \log _(a)(x)), уявіть собі вираз " a? = x (\displaystyle a^(?)=x)", тобто задайте наступним питанням: "У який ступінь необхідно звести a, Щоб отримати x?". Для відповіді на це запитання може знадобитися калькулятор, але якщо вам пощастить, ви зможете знайти його вручну.

    • Приклад 1 (продовження): Перепишіть у вигляді 2? = 16 (\displaystyle 2^(?)=16). Необхідно знайти, скільки має стояти замість знака "?". Це можна зробити методом спроб і помилок:
      2 2 = 2 ∗ 2 = 4 (\displaystyle 2^(2)=2*2=4)
      2 3 = 4 ∗ 2 = 8 (\displaystyle 2^(3)=4*2=8)
      2 4 = 8 ∗ 2 = 16 (\displaystyle 2^(4)=8*2=16)
      Отже, шуканим числом є 4: log 2 ⁡ (16) (\displaystyle \log _(2)(16)) = 4 .
  4. Залишіть відповідь у логарифмічній формі, якщо вам не вдається спростити її.Багато логарифмів дуже складно обчислити вручну. У цьому випадку, щоб отримати точну відповідь, вам знадобиться калькулятор. Однак якщо ви вирішуєте завдання на уроці, то вчителі, швидше за все, задовольнять відповідь у логарифмічному вигляді. Нижче розглянутий метод використаний на вирішення складнішого прикладу:

    • приклад 2: чому одно log 3 ⁡ (58) log 3 ⁡ (7) (\displaystyle (\frac (\log _(3)(58))(\log _(3)(7))))?
    • Перетворимо цей вислів на один логарифм: log 3 ⁡ (58) log 3 ⁡ (7) = log 7 ⁡ (58) (\displaystyle (\frac (\log _(3)(58))(\log _(3)(7)))=\ log _(7)(58)). Зверніть увагу, що загальна для обох логарифмів основа 3 зникає; це справедливо для будь-якої основи.
    • Перепишемо вираз у вигляді 7? = 58 (\displaystyle 7^(?)=58)і спробуємо знайти значення?
      7 2 = 7 ∗ 7 = 49 (\displaystyle 7^(2)=7*7=49)
      7 3 = 49 ∗ 7 = 343 (\displaystyle 7^(3)=49*7=343)
      Оскільки 58 між цими двома числами, не виражається цілим числом.
    • Залишаємо відповідь у логарифмічному вигляді: log 7 ⁡ (58) (\displaystyle \log _(7)(58)).

Сьогодні ми поговоримо про формулах логарифміві дамо показові приклади рішення.

Самі собою мають на увазі шаблони рішення відповідно до основних властивостей логарифмів. Перш за все застосовувати формули логарифмів для вирішення нагадаємо для вас, спочатку всі властивості:

Тепер на основі цих формул (властивостей), покажемо приклади вирішення логарифмів.

Приклади розв'язання логарифмів виходячи з формул.

Логарифмпозитивного числа b на підставі a (позначається log a b) - це показник ступеня, в який треба звести a щоб отримати b, при цьому b > 0, a > 0, а 1.

Відповідно до визначення log a b = x, що рівносильно a x = b, тому log a a x = x.

Логарифми, Приклади:

log 28 = 3, т.к. 2 3 = 8

log 7 49 = 2, т.к. 7 2 = 49

log 5 1/5 = -1, т.к. 5 -1 = 1/5

Десятковий логарифм- це звичайний логарифм, на основі якого знаходиться 10. Позначається як lg.

log 10100 = 2, т.к. 10 2 = 100

Натуральний логарифм- також звичайний логарифм логарифм, але з підставою е (е = 2,71828... - ірраціональне число). Позначається як ln.

Формули чи властивості логарифмів бажано запам'ятати, тому що вони знадобляться нам надалі при розв'язанні логарифмів, логарифмічних рівнянь та нерівностей. Давайте ще раз відпрацюємо кожну формулу на прикладах.

  • Основне логарифмічне тотожність
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Логарифм твору дорівнює сумі логарифмів.
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1 * 10) = log 3 81 = 4

  • Логарифм приватного дорівнює різниці логарифмів
    log a (b/c) = log a b - log a c

    9 log 5 50 / 9 log 5 2 = 9 log 5 50 - log 5 2 = 9 log 5 25 = 9 2 = 81

  • Властивості ступеня логарифмованого числа та основи логарифму

    Показник ступеня логарифмованого числа log a b m = mlog a b

    Показник ступеня основи логарифму log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    якщо m = n, отримаємо log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Перехід до нової основи
    log a b = log c b/log c a,

    якщо c = b, отримаємо log b b = 1

    тоді log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Як бачите, формули логарифмів не такі складні як здаються. Тепер розглянувши приклади розв'язання логарифмів, ми можемо переходити до логарифмічних рівнянь. Приклади розв'язання логарифмічних рівнянь ми докладніше розглянемо у статті: " ". НЕ пропустіть!

Якщо у вас залишилися питання щодо вирішення, пишіть їх у коментарях до статті.

Замітка: вирішили здобути освіту іншого класу навчання за кордоном як варіант розвитку подій.

\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

Пояснимо простіше. Наприклад, \(\log_(2)(8)\) дорівнює ступеня, в яку треба звести \(2\), щоб отримати \(8\). Звідси відомо, що (log_(2)(8)=3).

Приклади:

\(\log_(5)(25)=2\)

т.к. \(5^(2)=25\)

\(\log_(3)(81)=4\)

т.к. \ (3 ^ (4) = 81 \)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

т.к. \(2^(-5)=\)\(\frac(1)(32)\)

Аргумент та основа логарифму

Будь-який логарифм має таку «анатомію»:

Аргумент логарифму зазвичай пишеться з його рівні, а основа - підрядковим шрифтом ближче до знаку логарифму. А читається цей запис так: «логарифм двадцяти п'яти на підставі п'ять».

Як визначити логарифм?

Щоб обчислити логарифм – потрібно відповісти на запитання: в який ступінь слід звести основу, щоб отримати аргумент?

Наприклад, обчисліть логарифм: а) \(\log_(4)(16)\) б) \(\log_(3)\)\(\frac(1)(3)\) в) \(\log_(\sqrt (5))(1)\) г) \(\log_(\sqrt(7))(\sqrt(7))\) д) \(\log_(3)(\sqrt(3))\)

а) В який ступінь треба звести (4), щоб отримати (16)? Вочевидь у другу. Тому:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

в) В який ступінь треба звести (sqrt(5)), щоб отримати (1)? А який рівень робить будь-яке число одиницею? Нуль, звичайно!

\(\log_(\sqrt(5))(1)=0\)

г) В який ступінь треба звести \(\sqrt(7)\), щоб отримати \(\sqrt(7)\)? У першу - будь-яке число в першому ступені дорівнює самому собі.

\(\log_(\sqrt(7))(\sqrt(7))=1\)

д) В який ступінь треба звести (3), щоб отримати (sqrt (3))? З ми знаємо, що - це дробовий ступінь, і значить квадратний корінь - це ступінь \(\frac(1)(2)\).

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

приклад : Обчислити логарифм \(\log_(4\sqrt(2))(8)\)

Рішення :

\(\log_(4\sqrt(2))(8)=x\)

Нам треба знайти значення логарифму, позначимо його за ікс. Тепер скористаємося визначенням логарифму:
\(\log_(a)(c)=b\) \(\Leftrightarrow\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

Що пов'язує \(4\sqrt(2)\) і \(8\)? Двійка, тому що і те, і інше число можна уявити двійки:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

Зліва скористаємось властивостями ступеня: \(a^(m)\cdot a^(n)=a^(m+n)\) та \((a^(m))^(n)=a^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

Підстави рівні, переходимо до рівності показників

\(\frac(5x)(2)\) \(=3\)


Помножимо обидві частини рівняння на \(\frac(2)(5)\)


Корінь, що вийшов, і є значення логарифму

Відповідь : \(\log_(4\sqrt(2))(8)=1,2\)

Навіщо вигадали логарифм?

Щоб це зрозуміти, розв'яжемо рівняння: \(3^(x)=9\). Просто підберіть \(x\), щоб рівність спрацювала. Звісно, ​​(x=2).

А тепер розв'яжіть рівняння: \(3^(x)=8\).Чому дорівнює ікс? Ось у тому й справа.

Найдогадливіші скажуть: «ікс трохи менше двох». А як точно записати це число? Для відповіді це питання і придумали логарифм. Завдяки йому відповідь тут можна записати як \(x=\log_(3)(8)\).

Хочу наголосити, що \(\log_(3)(8)\), як і будь-який логарифм - це просто число. Так, виглядає незвично, зате коротко. Тому що, якби ми захотіли записати його у вигляді десяткового дробу, то воно виглядало б ось так: \(1,892789260714.....\)

приклад : Розв'яжіть рівняння \(4^(5x-4)=10\)

Рішення :

\(4^(5x-4)=10\)

\(4^(5x-4)\) і \(10\) жодної підстави не привести. Значить, тут не обійтися без логарифму.

Скористаємося визначенням логарифму:
\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

Дзеркально перевернемо рівняння, щоб ікс був ліворуч

\(5x-4=\log_(4)(10)\)

Перед нами . Перенесемо (4) праворуч.

І не лякайтеся логарифму, ставтеся до нього як до звичайного числа.

\(5x=\log_(4)(10)+4\)

Поділимо рівняння на 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


Ось наш корінь. Так, виглядає незвично, але відповіді не обирають.

Відповідь : \(\frac(\log_(4)(10)+4)(5)\)

Десятковий та натуральний логарифми

Як зазначено у визначенні логарифму, його основою може бути будь-яке позитивне число, крім одиниці ((a>0, a\neq1)). І серед усіх можливих підстав є два такі часто, що для логарифмів з ними придумали особливий короткий запис:

Натуральний логарифм: логарифм, у якого основа - число Ейлера (e) (рівне приблизно (2,7182818 ...)), і записується такий логарифм як (ln (a)).

Тобто, \(\ln(a)\) це те саме, що і \(\log_(e)(a)\)

Десятковий логарифм: логарифм, у якого основа дорівнює 10, записується \(\lg(a)\).

Тобто, \(\lg(a)\) це те саме, що і \(\log_(10)(a)\), де (a) - деяке число.

Основне логарифмічне тотожність

У логарифмів є багато властивостей. Одне з них носить назву «Основна логарифмічна тотожність» і виглядає так:

\(a^(\log_(a)(c))=c\)

Ця властивість випливає безпосередньо з визначення. Подивимося, як саме ця формула з'явилася.

Згадаймо короткий запис визначення логарифму:

якщо \(a^(b)=c\), то \(\log_(a)(c)=b\)

Тобто, \(b\) - це теж саме, що \(\log_(a)(c)\). Тоді ми можемо у формулі \(a^(b)=c\) написати \(\log_(a)(c)\) замість \(b\). Вийшло \(a^(\log_(a)(c))=c\) – основна логарифмічна тотожність.

Інші властивості логарифмів ви можете знайти. З їх допомогою можна спрощувати та обчислювати значення виразів з логарифмами, які «в лоб» порахувати складно.

приклад : Знайдіть значення виразу \(36^(\log_(6)(5))\)

Рішення :

Відповідь : \(25\)

Як записати число у вигляді логарифму?

Як було сказано вище – будь-який логарифм це число. Вірно і зворотне: будь-яке число може бути записане як логарифм. Наприклад, ми знаємо, що \(\log_(2)(4)\) дорівнює двом. Тоді можна замість двійки писати \(\log_(2)(4)\).

Але \(\log_(3)(9)\) теж дорівнює \(2\), значить, також можна записати \(2=\log_(3)(9)\). Аналогічно і з (log_(5)(25)\), і з (log_(9)(81)\), і т.д. Тобто виходить

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

Таким чином, якщо нам потрібно, ми можемо будь-де (хоч у рівнянні, хоч у виразі, хоч у нерівності) записувати двійку як логарифм з будь-якою основою – просто як аргумент пишемо основу в квадраті.

Так само і з трійкою – її можна записати як \(\log_(2)(8)\), або як \(\log_(3)(27)\), або як \(\log_(4)(64) \) ... Тут ми як аргумент пишемо основу в кубі:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

І з четвіркою:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

І з мінус одиницею:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1) )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\) \(...\)

І з однієї третьої:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

Будь-яке число \(a\) може бути представлене як логарифм з основою \(b\): \(a=\log_(b)(b^(a))\)

приклад : Знайдіть значення виразу \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

Рішення :

Відповідь : \(1\)