Найбільше та найменше значення функції на відрізку. Найменше та найбільше значення функції на відрізку

Що таке екстремум функції та яка необхідна умова екстремуму?

Екстремумом функції називається максимум і мінімум функції.

Необхідна умовамаксимуму і мінімуму (екстремуму) функції наступне: якщо функція f(x) має екстремум у точці х = а, то цій точці похідна або дорівнює нулю, або нескінченна, або немає.

Ця умова необхідна, але не достатня. Похідна в точці х = а може звертатися в нуль, у нескінченність або не існувати без того, щоб функція мала екстремум у цій точці.

Яка достатня умова екстремуму функції (максимум або мінімум)?

Перша умова:

Якщо в достатній близькості від точки х = а похідна f? максимум

Якщо в достатній близькості від точки х = а похідна f? мінімумза умови, що функція f(x) тут безперервна.

Натомість можна скористатися другою достатньою умовою екстремуму функції:

Нехай у точці х = а перша похідна f?(x) перетворюється на нуль; якщо у своїй друга похідна f??(а) негативна, то функція f(x) має у точці x = a максимум, якщо позитивна - то мінімум.

Що таке критична точка функції та як її знайти?

Це значення аргументу функції, у якому функція має екстремум (тобто максимум чи мінімум). Щоб його знайти, потрібно знайти похіднуфункції f?(x) і, прирівнявши її до нуля, вирішити рівняння f?(x) = 0. Коріння цього рівняння, і навіть ті точки, у яких немає похідна цієї функції, є критичними точками, т. е. значеннями аргументу, у яких може бути екстремум. Їх можна легко визначити, глянувши на графік похідної: нас цікавлять ті значення аргументу, за яких графік функції перетинає вісь абсцис (вісь Ох) і ті, за яких графік зазнає розривів.

Наприклад знайдемо екстремум параболи.

Функція y(x) = 3x2 + 2x – 50.

Похідна функції: y? (x) = 6x + 2

Вирішуємо рівняння: y? (x) = 0

6х + 2 = 0, 6х = -2, х = -2/6 = -1/3

У разі критична точка - це х0=-1/3. Саме при цьому значенні аргументу функція має екстремум. Щоб його знайти, підставляємо для функції замість «х» знайдене число:

y0 = 3*(-1/3)2 + 2*(-1/3) - 50 = 3*1/9 - 2/3 - 50 = 1/3 - 2/3 - 50 = -1/3 - 50 = -50,333.

Як визначити максимум і мінімум функції, тобто. її найбільше та найменше значення?

Якщо знак похідної під час переходу через критичну точку х0 змінюється з «плюсу» на «мінус», то х0 є точка максимуму; якщо ж знак похідної змінюється з мінуса на плюс, то х0 є точка мінімуму; якщо знак не змінюється, то у точці х0 ні максимуму, ні мінімуму немає.

Для розглянутого прикладу:

Беремо довільне значення аргументу ліворуч від критичної точки: х = -1

При х = -1 значення похідної буде у? (-1) = 6 * (-1) + 2 = -6 + 2 = -4 (тобто знак - "мінус").

Тепер беремо довільне значення аргументу праворуч від критичної точки: х = 1

При х = 1 значення похідної буде у (1) = 6 * 1 + 2 = 6 + 2 = 8 (тобто знак - плюс).

Як бачимо, похідна під час переходу через критичну точку змінила знак із мінуса на плюс. Отже, за критичного значення х0 ми маємо точку мінімуму.

Найбільше та найменше значення функції на інтервалі(на відрізку) знаходять за такою ж процедурою тільки з урахуванням того, що, можливо, не всі критичні точкилежатимуть усередині зазначеного інтервалу. Ті критичні точки, які перебувають за межею інтервалу, слід виключити з розгляду. Якщо всередині інтервалу знаходиться лише одна критична точка – у ній буде або максимум, або мінімум. У цьому випадку для визначення найбільшого та найменшого значень функції враховуємо також значення функції на кінцях інтервалу.

Наприклад, знайдемо найбільше та найменше значення функції

y(x) = 3sin(x) - 0,5х

на інтервалах:

Отже, похідна функції -

y?(x) = 3cos(x) - 0,5

Вирішуємо рівняння 3cos(x) - 0,5 = 0

cos(x) = 0,5/3 = 0,16667

х = ± arccos (0,16667) + 2πk.

Знаходимо критичні точки на інтервалі [-9; 9]:

х = arccos (0,16667) - 2π * 2 = -11,163 (не входить в інтервал)

х = -arccos (0,16667) - 2π * 1 = -7,687

х = arccos (0,16667) - 2π * 1 = -4,88

x = -arccos(0,16667) + 2π*0 = -1,403

x = arccos(0,16667) + 2π*0 = 1,403

x = -arccos(0,16667) + 2π*1 = 4,88

x = arccos(0,16667) + 2π*1 = 7,687

х = -arccos(0,16667) + 2π*2 = 11,163 (не входить до інтервалу)

Знаходимо значення функції при критичних значеннях аргументу:

y(-7,687) = 3cos(-7,687) - 0,5 = 0,885

y(-4,88) = 3cos(-4,88) - 0,5 = 5,398

y(-1,403) = 3cos(-1,403) - 0,5 = -2,256

y(1,403) = 3cos(1,403) - 0,5 = 2,256

y(4,88) = 3cos(4,88) - 0,5 = -5,398

y(7,687) = 3cos(7,687) - 0,5 = -0,885

Видно, що на інтервалі [-9; 9] найбільше значення функція має за x = -4,88:

x = -4,88, у = 5,398,

а найменше – при х = 4,88:

x = 4,88, у = -5,398.

На інтервалі [-6; -3] маємо лише одну критичну точку: х = -4,88. Значення функції при х = -4,88 дорівнює у = 5,398.

Знаходимо значення функції на кінцях інтервалу:

y(-6) = 3cos(-6) - 0,5 = 3,838

y(-3) = 3cos(-3) - 0,5 = 1,077

На інтервалі [-6; -3] маємо найбільше значення функції

у = 5,398 при x = -4,88

найменше значення -

у = 1,077 при x = -3

Як знайти точки перегину графіка функції та визначити сторони опуклості та увігнутості?

Щоб знайти всі точки перегину лінії y = f(x), треба знайти другу похідну, прирівняти її до нуля (вирішити рівняння) і випробувати всі значення х, для яких друга похідна дорівнює нулю, нескінченна або не існує. Якщо при переході через одне з цих значень друга похідна змінює знак, графік функції має в цій точці перегин. Якщо ж не змінює, то перегину немає.

Коріння рівняння f? (x) = 0, а також можливі точки розриву функції та другої похідної розбивають область визначення функції на ряд інтервалів. Випуклість на кожному їх інтервалі визначається знаком другої похідної. Якщо друга похідна в точці на досліджуваному інтервалі позитивна, лінія y = f(x) звернена тут увігнутістю догори, і якщо негативна - то донизу.

Як знайти екстремуми функції двох змінних?

Щоб знайти екстремуми функції f(x,y), що диференціюється в області її завдання, потрібно:

1) знайти критичні точки, а для цього вирішити систему рівнянь

fх? (x, y) = 0, f? (x, y) = 0

2) для кожної критичної точки Р0(a;b) дослідити, чи залишається незмінним знак різниці

всім точок (х;у), досить близьких до Р0. Якщо різниця зберігає позитивний знак, то точці Р0 маємо мінімум, якщо негативний - то максимум. Якщо різницю не зберігає знака, то точці Р0 екстремуму немає.

Аналогічно визначають екстремуми функції за більшої кількості аргументів.

Процес пошуку найменшого і максимального значення функції на відрізку нагадує цікавий обліт об'єкта (графіка функції) на гелікоптері з обстрілом з далекобійної гармати певних точок і вибором з цих точок дуже особливих точок для контрольних пострілів. Крапки вибираються певним чином і за певними правилами. За якими правилами? Про це ми далі й поговоримо.

Якщо функція y = f(x) безперервна на відрізку [ a, b] , то вона досягає на цьому відрізку найменшого і найбільшого значень . Це може статися або в точках екстремуму, або кінцях відрізка. Тому для знаходження найменшого і найбільшого значень функції , безперервний на відрізку [ a, b], потрібно обчислити її значення у всіх критичних точкахі на кінцях відрізка, а потім вибрати з них найменше та найбільше.

Нехай, наприклад, потрібно визначити найбільше значення функції f(x) на відрізку [ a, b]. Для цього слід знайти всі її критичні точки, що лежать на [ a, b] .

Критичною точкою називається точка, в якій функція визначена, а її похіднаабо дорівнює нулю, або немає. Потім слід обчислити значення функції критичних точках. І, нарешті, слід порівняти між собою за величиною значення функції в критичних точках і кінцях відрізка ( f(a) та f(b)). Найбільше з цих чисел і буде найбільшим значенням функції на відрізку [a, b] .

Аналогічно вирішуються завдання на перебування найменших значень функції .

Шукаємо найменше та найбільше значення функції разом

Приклад 1. Знайти найменше та найбільше значенняфункції на відрізку [-1, 2] .

Рішення. Знаходимо похідну цієї функції. Прирівняємо похідну нулю () та отримаємо дві критичні точки: і . Для знаходження найменшого та найбільшого значень функції на заданому відрізку достатньо обчислити її значення на кінцях відрізка і в точці, оскільки точка не належить відрізку [-1, 2]. Ці значення функції - такі: , , . З цього виходить що найменше значення функції(на графіці нижче позначено червоним), що дорівнює -7, досягається на правому кінці відрізка - у точці , а найбільше(теж червоне на графіці), дорівнює 9, - у критичній точці .

Якщо функція безперервна в деякому проміжку і цей проміжок не є відрізком (а є, наприклад, інтервалом; різниця між інтервалом та відрізком: граничні точки інтервалу не входять до інтервалу, а граничні точки відрізка входять у відрізок), то серед значень функції може і не бути найменшого та найбільшого. Так, наприклад, функція, зображена на малюнку нижче, безперервна на ]-∞, +∞[ і не має найбільшого значення.

Однак для будь-якого проміжку (закритого, відкритого чи нескінченного) справедлива наступна властивість безперервних функцій.

Приклад 4. Знайти найменше та найбільше значення функції на відрізку [-1, 3] .

Рішення. Знаходимо похідну цієї функції як похідну приватного:

.

Прирівнюємо похідну нулю, що дає одну критичну точку: . Вона належить відрізку [-1, 3]. Для знаходження найменшого та найбільшого значень функції на заданому відрізку знаходимо її значення на кінцях відрізка та в знайденій критичній точці:

Порівнюємо ці значення. Висновок: , рівного -5/13, у точці та найбільшого значення, рівного 1, у точці .

Продовжуємо шукати найменше та найбільше значення функції разом

Існують викладачі, які на тему знаходження найменшого і максимального значень функції не дають студентам на вирішення приклади складніше щойно розглянутих, тобто таких, у яких функція - многочлен чи дріб, чисельник і знаменник якої - многочлены. Але ми не обмежимося такими прикладами, оскільки серед викладачів бувають любителі змусити студентів думати по повній (таблиці похідних). Тому в хід підуть логарифм та тригонометрична функція.

Приклад 6. Знайти найменше та найбільше значення функції на відрізку .

Рішення. Знаходимо похідну цієї функції як похідну твори :

Прирівнюємо похідну нулю, що дає одну критичну точку: . Вона належить відрізку. Для знаходження найменшого та найбільшого значень функції на заданому відрізку знаходимо її значення на кінцях відрізка та в знайденій критичній точці:

Результат усіх дій: функція досягає найменшого значення, рівного 0, у точці та в точці та найбільшого значення, рівного e², у точці.

Приклад 7. Знайти найменше та найбільше значення функції на відрізку .

Рішення. Знаходимо похідну цієї функції:

Прирівнюємо похідну нулю:

Єдина критична точка належить відрізку. Для знаходження найменшого та найбільшого значень функції на заданому відрізку знаходимо її значення на кінцях відрізка та в знайденій критичній точці:

Висновок: функція досягає найменшого значення, рівного , у точці та найбільшого значення, рівного , у точці .

У прикладних екстремальних задачах знаходження найменшого (найбільшого) значень функції, як правило, зводиться до знаходження мінімуму (максимуму). Але більший практичний інтерес мають самі мінімуми чи максимуми, а ті значення аргументу, у яких досягаються. При вирішенні прикладних завдань виникає додаткова труднощі - складання функцій, що описують явище, що розглядається, або процес.

Приклад 8.Резервуар ємністю 4 має форму паралелепіпеда з квадратною основою і відкритий зверху, потрібно вилудити оловом. Якими мають бути розміри резервуара, щоб на його покриття пішла найменша кількість матеріалу?

Рішення. Нехай x- сторона основи, h- Висота резервуара, S- площа поверхні без кришки, V- Його обсяг. Площа поверхні резервуара виражається формулою, тобто. є функцією двох змінних. Щоб виразити Sяк функцію однієї змінної, скористаємося тим, що , звідки . Підставивши знайдений вираз hу формулу для S:

Досліджуємо цю функцію на екстремум. Вона визначена і диференційована всюди ]0, +∞[ , причому

.

Прирівнюємо похідну нулю () і знаходимо критичну точку. Крім того, при похідна не існує, але це значення не входить в область визначення і тому не може бути точкою екстремуму. Отже, єдина критична точка. Перевіримо її на наявність екстремуму, використовуючи другу достатню ознаку. Знайдемо другу похідну. При другому похідному більше нуля (). Значить, при функція досягає мінімуму . Оскільки цей мінімум - єдиний екстремум цієї функції, і є її найменшим значенням. Отже, сторона основи резервуара повинна дорівнювати 2 м, а його висота .

Приклад 9.З пункту A, що знаходиться на лінії залізниці, в пункт Звіддалений від неї на відстані l, повинні переправити вантажі. Вартість провезення вагової одиниці на одиницю відстані залізницею дорівнює, а шосе вона дорівнює. До якої точки Млінії залізниціслід провести шосе, щоб транспортування вантажу з Ав Збула найбільш економічною (ділянка АВзалізниці передбачається прямолінійним)?

Нехай функція у =f(х)безперервна на відрізку [ a, b]. Як відомо, така функція на цьому відрізку досягає найбільшого та найменшого значень. Ці значення функція може прийняти або у внутрішній точці відрізка [ a, b], або межі відрізка.

Для знаходження найбільшого та найменшого значень функції на відрізку [ a, b] необхідно:

1)знайти критичні точки функції в інтервалі ( a, b);

2) обчислити значення функції у знайдених критичних точках;

3) обчислити значення функції на кінцях відрізка, тобто при x=аі х = b;

4) з усіх обчислених значень функції вибрати найбільше та найменше.

приклад.Знайти найбільше та найменше значення функції

на відрізку.

Знаходимо критичні точки:

Ці точки лежать усередині відрізка; y(1) = ‒ 3; y(2) = ‒ 4; y(0) = ‒ 8; y(3) = 1;

у точці x= 3 і в точці x= 0.

Дослідження функції на опуклість та точку перегину.

Функція y = f (x) називається опуклою вгоруна проміжку (a, b) , якщо її графік лежить під дотичною, проведеною в будь-якій точці цього проміжку, і називається опуклою вниз (увігнутою)якщо її графік лежить над дотичною.

Точка, при переході через яку опуклість змінюється увігнутістю чи навпаки, називається точкою перегину.

Алгоритм дослідження на опуклість та точку перегину:

1. Знайди критичні точки другого роду, тобто точки в яких друга похідна дорівнює нулю чи немає.

2. Завдати критичні точки на числову пряму, розбиваючи її на проміжки. Знайти знак другої похідної кожному проміжку; якщо , то функція опукла вгору, якщо функція опукла вниз.

3. Якщо при переході через критичну точку другого роду поміняє знак і в цій точці друга похідна дорівнює нулю, то ця точка абсцесу точки перегину. Знайти її ординату.

Асимптоти графіка функції. Дослідження функції асимптоти.

Визначення.Асимптотою графіка функції називається пряма, Що володіє тим властивістю, що відстань від будь-якої точки графіка до цієї прямої прагне нуля при необмеженому видаленні точки графіка від початку координат.

Існують три види асимптоту: вертикальні, горизонтальні та похилі.

Визначення.Пряма називається вертикальною асимптотоюграфіка функції у = f(х)якщо хоча б одна з односторонніх меж функції в цій точці дорівнює нескінченності, тобто

де - точка розриву функції, тобтоне належить області визначення.

приклад.

D ( y) = (‒ ∞; 2) (2; + ∞)

x= 2 – точка розриву.

Визначення.Пряма у =Aназивається горизонтальною асимптотоюграфіка функції у = f(х)при , якщо

приклад.

x

y

Визначення.Пряма у =kх +b (k≠ 0) називається похилою асимптотоюграфіка функції у = f(х)при , де

Загальна схема дослідження функцій та побудови графіків.

Алгоритм дослідження функціїу = f(х) :

1. Знайти область визначення функції D (y).

2. Знайти (якщо це можна) точки перетину графіка з осями координат (при x= 0 і при y = 0).

3. Дослідити на парність та непарність функції( y (x) = y (x) парність; y(x) = y (x) непарність).

4. Знайти асимптоти графіка функції.

5. Знайти інтервали монотонності функції.

6. Знайти екстремуми функції.

7. Знайти інтервали опуклості (увігнутості) та точки перегину графіка функції.

8. З проведених досліджень побудувати графік функції.

приклад.Дослідити функцію та побудувати її графік.

1) D (y) =

x= 4 ‒ точка розриву.

2) При x = 0,

(0; ‒ 5) ‒ точка перетину з oy.

При y = 0,

3) y(x)= функція загального вигляду(ні парна, ні непарна).

4) Досліджуємо на асимптоти.

а) вертикальні

б) горизонтальні

в) знайдемо похилі асимптоти де

‒рівняння похилої асимптоти

5) У даному рівнянніне потрібно знайти інтервали монотонності функції.

6)

Ці критичні точки розбивають всю область визначення функції на інтервалі (˗∞; ˗2), (˗2; 4), (4; 10)і (10; +∞). Отримані результати зручно подати у вигляді наступної таблиці.

Іноді завдання B15 трапляються «погані» функції, котрим складно знайти похідну. Раніше таке було лише на пробниках, але зараз ці завдання настільки поширені, що вже не можуть бути ігноровані під час підготовки до ЄДІ.

У цьому випадку працюють інші прийоми, один з яких - монотонність.

Функція f (x ) називається монотонно зростаючою на відрізку , якщо для будь-яких точок x 1 і x 2 цього відрізка виконується таке:

x 1< x 2 ⇒ f (x 1) < f (x 2).

Функція f (x ) називається монотонно спадаючою на відрізку , якщо для будь-яких точок x 1 і x 2 цього відрізка виконується таке:

x 1< x 2 ⇒ f (x 1) > f ( x 2).

Іншими словами, для зростаючої функції чим більше x, тим більше f(x). Для спадної функції все навпаки: чим більше x, тим менше f(x).

Наприклад, логарифм монотонно зростає, якщо основа a > 1, і монотонно зменшується, якщо 0< a < 1. Не забывайте про область допустимых значений логарифма: x > 0.

f(x) = log a x (a > 0; a ≠ 1; x > 0)

Арифметичний квадратний (і не тільки квадратний) корінь монотонно зростає на всій ділянці визначення:

Показова функція поводиться аналогічно логарифму: зростає при a > 1 і меншає при 0< a < 1. Но в отличие от логарифма, показательная функция определена для всех чисел, а не только для x > 0:

f (x) = a x (a > 0)

Нарешті, ступеня з негативним показником. Можна записувати їх як дріб. Мають точку розриву, у якій монотонність порушується.

Всі ці функції ніколи не зустрічаються у чистому вигляді. У них додають багаточлени, дроби та інше марення, через яке стає важко вважати похідну. Що при цьому відбувається – зараз розберемо.

Координати вершини параболи

Найчастіше аргумент функції замінюється на квадратний тричленвиду y = ax 2 + bx + c. Його графік – стандартна парабола, в якій нас цікавлять:

  1. Гілки параболи - можуть йти вгору (при a > 0) або вниз (a< 0). Задают направление, в котором функция может принимать бесконечные значения;
  2. Вершина параболи - точка екстремуму квадратичної функції, у якій ця функція набуває найменше (для a > 0) чи найбільше (a< 0) значение.

Найбільший інтерес має саме вершина параболи, абсцису якої розраховується за формулою:

Отже, ми виявили точку екстремуму квадратичної функції. Але якщо вихідна функція монотонна, для неї точка x0 теж буде точкою екстремуму. Таким чином, сформулюємо ключове правило:

Точки екстремуму квадратного тричлена та складної функції, куди він входить, збігаються. Тому можна шукати x0 для квадратного тричлена, а на функцію – забити.

З наведених міркувань залишається незрозумілим, яку саме точку ми отримуємо: максимум чи мінімум. Однак завдання спеціально складаються так, що це не має значення. Судіть самі:

  1. Відрізок за умови завдання відсутня. Отже, обчислювати f (a) і f (b) не потрібно. Залишається розглянути лише точки екстремуму;
  2. Але таких точок всього одна - це вершина параболи x 0 координати якої обчислюються буквально усно і без будь-яких похідних.

Таким чином, рішення задачі різко спрощується і зводиться всього до двох кроків:

  1. Виписати рівняння параболи y = ax 2 + bx + c та знайти її вершину за формулою: x 0 = −b /2a ;
  2. Знайти значення вихідної функції у цій точці: f (x 0). Якщо додаткових умов немає, це і буде відповіддю.

На перший погляд, цей алгоритм та його обґрунтування можуть здатися складними. Я навмисно не викладаю «голу» схему рішення, оскільки бездумне застосування таких правил загрожує помилками.

Розглянемо справжні завдання із пробного ЄДІ з математики - саме там цей прийом зустрічається найчастіше. Заодно переконаємося, що таким чином багато завдань B15 стають майже усними.

Під корінням стоїть квадратична функція y = x 2 + 6x + 13. Графік цієї функції – парабола гілками догори, оскільки коефіцієнт a = 1 > 0.

Вершина параболи:

x 0 = −b /(2a ) = −6/(2 · 1) = −6/2 = −3

Оскільки гілки параболи спрямовані вгору, у точці x 0 = −3 функція y = x 2 + 6x + 13 набуває найменшого значення.

Корінь монотонно зростає, отже x 0 – точка мінімуму всієї функції. Маємо:

Завдання. Знайдіть найменше значення функції:

y = log 2 (x 2 + 2x + 9)

Під логарифмом знову квадратична функція: y = x 2 + 2x + 9. Графік - парабола гілками вгору, т.к. a = 1> 0.

Вершина параболи:

x 0 = −b /(2a ) = −2/(2 · 1) = −2/2 = −1

Отже, у точці x 0 = −1 квадратична функція набуває найменшого значення. Але функція y = log 2 x - монотонна, тому:

y min = y (−1) = log 2 ((−1) 2 + 2 · (−1) + 9) = ... = log 2 8 = 3

У показнику стоїть квадратична функція y = 1 − 4x − x 2 . Перепишемо її у нормальному вигляді: y = −x 2 − 4x + 1.

Очевидно, що графік цієї функції – парабола, гілки вниз (a = −1< 0). Поэтому вершина будет точкой максимума:

x 0 = −b /(2a ) = −(−4)/(2 · (−1)) = 4/(−2) = −2

Вихідна функція – показова, вона монотонна, тому найбільше значення буде у знайденій точці x 0 = −2:

Уважний читач напевно зауважить, що ми не виписували область допустимих значень кореня та логарифму. Але цього й не вимагалося: усередині стоять функції, значення яких завжди позитивні.

Наслідки в галузі визначення функції

Іноді вирішення завдання B15 недостатньо просто знайти вершину параболи. Шукане значення може лежати на кінці відрізка, а зовсім не в точці екстремуму. Якщо завдання взагалі не вказаний відрізок, дивимося на область допустимих значеньвихідної функції. А саме:

Зверніть увагу ще раз: нуль цілком може бути під коренем, але в логарифмі чи знаменнику дробу – ніколи. Подивимося, як це працює на конкретних прикладах:

Завдання. Знайдіть найбільше значення функції:

Під коренем знову квадратична функція: y = 3 − 2x − x 2 . Її графік - парабола, але гілки вниз, оскільки a = −1< 0. Значит, парабола уходит на минус бесконечность, что недопустимо, поскольку арифметический квадратный корень из отрицательного числа не существует.

Виписуємо область допустимих значень (ОДЗ):

3 − 2x − x 2 ≥ 0 ⇒ x 2 + 2x − 3 ≤ 0 ⇒ (x + 3)(x − 1) ≤ 0 ⇒ x ∈ [−3; 1]

Тепер знайдемо вершину параболи:

x 0 = −b /(2a ) = −(−2)/(2 · (−1)) = 2/(−2) = −1

Точка x 0 = −1 належить відрізку ОДЗ – і це добре. Тепер вважаємо значення функції в точці x 0, а також на кінцях ОДЗ:

y(−3) = y(1) = 0

Отже, отримали числа 2 та 0. Нас просять знайти найбільше – це число 2.

Завдання. Знайдіть найменше значення функції:

y = log 0,5 (6x − x 2 − 5)

Усередині логарифму стоїть квадратична функція y = 6x − x 2 − 5. Це парабола гілками вниз, але в логарифмі не може бути негативних чисел, тому виписуємо ОДЗ:

6x − x 2 − 5 > 0 ⇒ x 2 − 6x + 5< 0 ⇒ (x − 1)(x − 5) < 0 ⇒ x ∈ (1; 5)

Зверніть увагу: нерівність сувора, тому кінці не належать ОДЗ. Цим логарифм відрізняється від кореня, де кінці нас повністю влаштовують.

Шукаємо вершину параболи:

x 0 = −b /(2a ) = −6/(2 · (−1)) = −6/(−2) = 3

Вершина параболи підходить за ОДЗ: x 0 = 3 ∈ (1; 5). Але оскільки кінці відрізка нас не цікавлять, вважаємо значення функції лише у точці x 0:

y min = y (3) = log 0,5 (6 · 3 − 3 2 − 5) = log 0,5 (18 − 9 − 5) = log 0,5 4 = −2

Дорогі друзі! До групи завдань, пов'язаних з похідною, входять завдання — в умові дано графік функції, кілька точок на цьому графіку і стоїть питання:

У якій точці значення похідної найбільше (найменше)?

Коротко повторимо:

Похідна в точці дорівнює кутовому коефіцієнту дотичної проходить черезцю точку графіка.

Уголовний коефіцієнт дотичної у свою чергу дорівнює тангенсу кута нахилу цієї дотичної.

*Мається на увазі кут між дотичною та віссю абсцис.

1. На інтервалах зростання функції похідна має позитивне значення.

2. На інтервалах її спадання похідна має негативне значення.


Розглянемо наступний ескіз:


У точках 1,2,4 похідна функції має негативне значення, оскільки ці точки належать інтервалам спадання.

У точках 3,5,6 похідна функції має позитивне значення, оскільки ці точки належать інтервалам зростання.

Як бачимо, зі значенням похідної все ясно, тобто визначити який вона має знак (позитивний чи негативний) у певній точці графіка зовсім нескладно.

При чому, якщо ми подумки побудуємо дотичні в цих точках, то побачимо, що прямі кути, що проходять через точки 3, 5 і 6 утворюють з віссю оХ, що лежать в межах від 0 до 90 про, а прямі проходять через точки 1, 2 і 4 утворюють з віссю оХ кути в межах від 90 до 180 о.

*Взаємозв'язок зрозумілий: дотичні проходять через точки належать інтервалам зростання функції утворюють з віссю оХ гострі кути, дотичні проходять через точки належать інтервалам зменшення функції утворюють з віссю оХ тупі кути.

Тепер важливе питання!

А як змінюється значення похідної? Адже дотична у різних точках графіка безперервної функції утворює різні кути, залежно від цього, через яку точку графіка вона проходить.

*Або, кажучи простою мовою, дотична розташована як би «горизонтальніше» або «вертикальніше». Подивіться:

Прямі утворюють з віссю оХ кути в межах від 0 до 90 о


Прямі утворюють з віссю оХ кути в межах від 90 до 180 о


Тому, якщо стоятимуть питання:

— в якій із точок графіка значення похідної має найменше значення?

— у якій із точок графіка значення похідної має найбільше значення?

то для відповіді необхідно розуміти, як змінюється значення тангенсу кута дотичної в межах від 0 до 180 о.

*Як уже сказано, значення похідної функції в точці дорівнює тангенсу кута нахилу дотичної до осі оХ.

Значення тангенсу змінюється так:

При зміні кута нахилу прямої від 0 до 90 про значення тангенса, а значить і похідної, змінюється відповідно від 0 до +∞;

При зміні кута нахилу прямий від 90 до 180 значення тангенса, а значить і похідної, змінюється відповідно –∞ до 0.

Наочно це видно за графіком функції тангенсу:

Говорячи простою мовою:

При куті нахилу дотичної від 0 до 90 про

Чим він ближче до 0о, тим більше значення похідної буде близько до нуля (з позитивного боку).

Чим кут ближче до 90о, тим більше значення похідної буде збільшуватися до +∞.

При куті нахилу дотичної від 90 до 180 про

Чим він ближчий до 90 про, тим більше значення похідної зменшуватиметься до –∞.

Чим кут буде ближче до 180 про, тим більше значення похідної буде близько до нуля (з негативного боку).

317543. На малюнку зображено графік функції y = f(x) та відзначені точки–2, –1, 1, 2. У якій із цих точок значення похідної найбільше? У відповіді вкажіть цю точку.


Маємо чотири точки: дві з них належать інтервалам на яких функція зменшується (це точки -1 і 1) і два інтервалам на яких функція зростає (це точки -2 і 2).

Можемо відразу зробити висновок у тому, що у точках –1 і 1 похідна має негативне значення, у точках –2 і 2 вона має позитивне значення. Отже в даному випадку необхідно проаналізувати точки -2 і 2 і визначити в якому значення буде найбільшим. Побудуємо дотичні, що проходять через зазначені точки:


Значення тангенсу кута між прямою a і віссю абсцис буде більшим за значення тангенса кута між прямою b і цією віссю. Це означає, що значення похідної у точці –2 буде найбільшим.

Відповімо на наступне питання: у якій із точок –2, –1, 1 чи 2 значення похідної є найбільшим негативним? У відповіді вкажіть цю точку.

Похідна матиме негативне значення в точках, що належать інтервалам спадання, тому розглянемо точки -2 і 1. Побудуємо дотичні проходять через них:


Бачимо, що тупий кут між прямою b і віссю оХ знаходиться «ближче» до 180о , Тому його тангенс буде більше тангенса кута, утвореного прямою а і віссю ОХ.

Таким чином, у точці х = 1 значення похідної буде найбільшим негативним.

317544. На малюнку зображено графік функції y = f(x) та відзначені точки–2, –1, 1, 4. У якій із цих точок значення похідної найменше? У відповіді вкажіть цю точку.


Маємо чотири точки: дві з них належать інтервалам, на яких функція зменшується (це точки –1 та 4) та дві інтервалам, на яких функція зростає (це точки –2 та 1).

Можемо відразу зробити висновок у тому, що у точках –1 і 4 похідна має негативне значення, у точках –2 і 1 вона має позитивне значення. Отже, у разі необхідно проаналізувати точки –1 і 4 і визначити – у якому їх значенні буде найменшим. Побудуємо дотичні, що проходять через зазначені точки:


Значення тангенсу кута між прямою a і віссю абсцис буде більшим за значення тангенса кута між прямою b і цією віссю. Це означає, що значення похідної у точці х = 4 буде найменшим.

Відповідь: 4

Сподіваюся, що «не перенавантажив» вас кількістю написаного. Насправді все дуже просто, варто тільки зрозуміти властивості похідної, її геометричний змісті як змінюється значення тангенсу кута від 0 до 180 о.

1. Спочатку визначте знаки похідної в даних точках (+ або -) та оберіть необхідні точки(Залежно від поставленого питання).

2. Побудуйте дотичні у цих точках.

3. Користуючись графіком тангесоїди, схематично позначте кути та відобразітьА Олександр.

PS: Буду вдячний Вам, якщо розповісте про сайт у соціальних мережах.